Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2004, Vol. 5 Issue (7): 827-834    DOI: 10.1631/jzus.2004.0827
Systems Science & Engineering     
Mixed Gl2/GH2 multi-channel multi-objective control synthesis for discrete time systems
YAN Wen-jun, ZHANG Sen-lin
Department of Systems Science and Engineering, Zhejiang University, Hangzhou 310027, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  This paper proposes a new approach for multi-objective robust control. The approach extends the standard generalized l2(Gl2) and generalized H2(GH2) conditions to a set of new linear matrix inequality (LMI) constraints based on a new stability condition. A technique for variable parameterization is introduced to the multi-objective control problem to preserve the linearity of the synthesis variables. Consequently, the multi-channel multi-objective mixed Gl2/GH2control problem can be solved less conservatively using computationally tractable algorithms developed in the paper.

Key wordsMixed Gl2/GH2 synthesis      Multi-objective optimization      Robust control      Discrete linear time-invariant systems      G-shaping paradigm     
Received: 10 July 2003     
CLC:  O436.1  
Cite this article:

YAN Wen-jun, ZHANG Sen-lin. Mixed Gl2/GH2 multi-channel multi-objective control synthesis for discrete time systems. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2004, 5(7): 827-834.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.2004.0827     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2004/V5/I7/827

[1] Peng Guo, Jun-hong Zhang. Numerical model and multi-objective optimization analysis of vehicle vibration[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(5): 393-412.
[2] Wei Wei, Ang Liu, Stephen C. Y. Lu, Thorsten Wuest. A multi-principle module identification method for product platform design[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(1): 1-10.
[3] Hu Zhang, Cun-lei Wang, Yong Zhang, Jun-yi Liang, Cheng-liang Yin. Drivability improvements for a single-motor parallel hybrid electric vehicle using robust controls[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(4): 291-301.
[4] Yi-cong Gao, Yi-xiong Feng, Jian-rong Tan. Multi-principle preventive maintenance: a design-oriented scheduling study for mechanical systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(11): 862-872.
[5] José D. Martínez-Morales, Elvia R. Palacios-Hernández, Gerardo A. Velázquez-Carrillo. Modeling and multi-objective optimization of a gasoline engine using neural networks and evolutionary algorithms[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(9): 657-670.
[6] Meng-ge Yu, Ji-ye Zhang, Wei-hua Zhang. Multi-objective optimization design method of the high-speed train head[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(9): 631-641.
[7] Francisco J. Martinez-Martin, Fernando Gonzalez-Vidosa, Antonio Hospitaler, Víctor Yepes. Multi-objective optimization design of bridge piers with hybrid heuristic algorithms[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(6): 420-432.
[8] Ning-yun Lu, Gui-xia Gong, Yi Yang, Jian-hua Lu. Multi-objective process parameter optimization for energy saving in injection molding process[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(5): 382-394.
[9] Mohsen GITIZADEH, Mohsen KALANTAR. Optimum allocation of FACTS devices in Fars Regional Electric Network using genetic algorithm based goal attainment[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(4): 478-487.
[10] Hui-jiao WANG, Xiao-dong ZHAO, An-ke XUE, Ren-quan LU. Delay-dependent robust control for uncertain discrete singular systems with time-varying delay[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(8): 1034-1042.
[11] Jun-hai SHI, Zhi-dan ZHONG, Xin-jian ZHU, Guang-yi CAO. Robust design and optimization for autonomous PV-wind hybrid power systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(3): 401-409.
[12] ZHU Xiao-cong, TAO Guo-liang, CAO Jian. Pressure observer based adaptive robust trajectory tracking control of a parallel manipulator driven by pneumatic muscles[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(12): 1928-1937.
[13] Liu Mei-qin. Interval standard neural network models for nonlinear systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(4 ): 8-.
[14] Ke Hai-sen, Ye Xu-dong. Robust adaptive controller design for a class of nonlinear systems with unknown high frequency gains[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(3 ): 6-.
[15] ZHANG Yan-hu, YAN Wen-jun, LU Jian-ning, ZHAO Guang-zhou. Multi-objective robust controller synthesis for discrete-time systems with convex polytopic uncertain domain[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2005, 6(Supplement 1): 87-93.