Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2013, Vol. 14 Issue (6): 417-426    DOI: 10.1631/jzus.A1300038
Energy Engineering     
Simulation, experimentation, and collaborative analysis of adjacent heat exchange modules in a vehicular cooling system
Yu-qi Huang, Rui Huang, Xiao-li Yu, Feng Lv
Power Machinery and Vehicular Engineering Institute, Zhejiang University, Hangzhou 310027, China; Department of Mechanical and Aerospace Engineering, Monash University-Clayton, Victoria 3800, Australia
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  A cooling system consisting of several heat exchange modules is a necessary part of an automobile, and its performance has a direct effect on a vehicle’s energy consumption. Heat exchangers, such as a charged air cooler (CAC), radiator, oil cooler, or condenser have different structures and can be arranged in various orders, and each combination may produce different effects because of interactions among them. In this study, we aimed to explore the principles governing interactions among adjacent heat exchangers in a cooling system, using numerical simulation and experimental technology. 3D models with different combinations were developed, compared, and analyzed comprehensively. A wind tunnel test platform was constructed to validate the computational results. We found that the heat dissipation of the modules was affected slightly by their relative position (the rules basically comply with the field synergy principle), but was independent of the modules’ spacing within a certain distance range. The heat dissipation of one module could be effectively improved by restructuring, but with a penalty of higher resistance. However, the negative effect on the downstream module was much less than expected. The results indicated that the intensity of heat transfer depends not only on the average temperature difference between cold and hot mediums, but also on the temperature distribution.

Key wordsCollaborative analysis      Heat exchangers      Field synergy principle      Computational fluid dynamics (CFD)      Wind tunnel     
Received: 30 January 2013      Published: 03 June 2013
CLC:  TK172  
Cite this article:

Yu-qi Huang, Rui Huang, Xiao-li Yu, Feng Lv. Simulation, experimentation, and collaborative analysis of adjacent heat exchange modules in a vehicular cooling system. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(6): 417-426.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1300038     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2013/V14/I6/417

[1] Dong-fang Hu, Zheng-liang Huang, Jing-yuan Sun, Jing-dai Wang, Zu-wei Liao, Bin-bo Jiang, Jian Yang, Yong-rong Yang. Numerical simulation of gas-liquid flow through a 90° duct bend with a gradual contraction pipe[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(3): 212-224.
[2] Jin-yuan Qian, Bu-zhan Liu, Zhi-jiang Jin, Jian-kai Wang, Han Zhang, An-le Lu. Numerical analysis of flow and cavitation characteristics in a pilot-control globe valve with different valve core displacements[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(1): 54-64.
[3] Zheng Tan, Xue-guan Song, Bing Ji, Zheng Liu, Ji-en Ma, Wen-ping Cao. 3D thermal analysis of a permanent magnet motor with cooling fans[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(8): 616-621.
[4] Wei-yun Shao, Li-jie Jiang, Lei Fang, David Z. Zhu, Zhi-lin Sun. Assessment of the safe evacuation of people walking through flooding staircases based on numerical simulation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(2): 117-130.
[5] Ji-feng Wang, Janusz Piechna, Norbert Müller. Numerical investigation of the power generation of a ducted composite material marine current turbine[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(1): 25-30.
[6] Lian-yun Liu, Zhi-yong Hao, Chi Liu. CFD analysis of a transfer matrix of exhaust muffler with mean flow and prediction of exhaust noise[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(9): 709-716.
[7] Hai-yun Zhang, Jin Wang, Guo-dong Lu. Numerical investigation of the influence of companion drops on drop-on-demand ink jetting[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(8): 584-595.
[8] Dennis Y. C. Leung, W. Y. Lo, W. Y. Chow, P. W. Chan. Effect of terrain and building structures on the airflow in an airport[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(6): 461-468.
[9] Qiang Li, Shu-lian Liu, Xiao-hong Pan, Shui-ying Zheng. A new method for studying the 3D transient flow of misaligned journal bearings in flexible rotor-bearing systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(4): 293-310.
[10] Zhuo-dong Zhang, Ralf Wieland, Matthias Reiche, Roger Funk, Carsten Hoffmann, Yong Li, Michael Sommer. A computational fluid dynamics model for wind simulation: model implementation and experimental validation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(4): 274-283.
[11] Xiao-wen Song, Guo-geng Zhang, Yun Wang, Shu-gen Hu. Use of bionic inspired surfaces for aerodynamic drag reduction on motor vehicle body panels[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(7): 543-551.
[12] Young T. Chae, Kwang Ho Lee, Jae Sung Park. Improved thermal performance of a hydronic radiant panel heating system by the optimization of tube shapes[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(6): 428-437.
[13] Chun-ho Liu, Dennis Y. C. Leung, Alex C. S. Man, P. W. Chan. Computational fluid dynamics simulation of the wind flow over an airport terminal building[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(6): 389-401.
[14] Yu-qi HUANG, Xiao-li YU, Guo-dong LU. Numerical simulation and optimization design of the EGR cooler in vehicle[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(9): 1270-1276.
[15] Jun LI, Ying-wei KANG, Guang-yi CAO, Xin-jian ZHU, Heng-yong TU, Jian LI. Numerical simulation of a direct internal reforming solid oxide fuel cell using computational fluid dynamics method[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(7): 961-969.