Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2008, Vol. 9 Issue (4): 558-563    DOI: 10.1631/jzus.A071564
Electrical & Electronic Engineering     
A novel dynamic equivalence method for grid-connected wind farm
Jia-geng QIAO, Zong-xiang LU, Yong MIN
State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  Dynamic equivalence of the wind farm is a fundamental problem in the simulation of a power system connected with wind farms because it is unpractical to model every generator in a wind farm in detail. In this paper, an Equivalence Method based on the Output Characteristics (EMOC) is proposed, with which the wind farm composed of Squirrel-Cage Induction Generators (SCIGs) can be equivalent to one generator. By considering the diversity of wind generators and special operating characteristics of a wind farm, the equivalent generator based on EMOC responds accurately in various faults. No matter whether the wind farm is integrated in grid or just programmed, EMOC can be used to acquire an accurate equivalent generator. Simulation of the dynamic equivalence of an SCIG wind farm validated the method.

Key wordsGrid-connected wind farm      Dynamic equivalence      Squirrel-Cage Induction Generator (SCIG)      Genetic algorithm     
Received: 25 October 2007      Published: 04 March 2008
CLC:  TM7  
  TK8  
Cite this article:

Jia-geng QIAO, Zong-xiang LU, Yong MIN. A novel dynamic equivalence method for grid-connected wind farm. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(4): 558-563.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A071564     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2008/V9/I4/558

[1] Yao-bin Zhuo, Xue-yan Xiang, Xiao-jun Zhou, Hao-liang Lv, Guo-yang Teng. A method for the global optimization of the tooth contact pattern and transmission error of spiral bevel and hypoid gears[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(5): 377-392.
[2] Hao Zheng, Yi-xiong Feng, Jian-rong Tan, Zhi-feng Zhang, Zi-xian Zhang. An integrated cognitive computing approach for systematic conceptual design[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(4): 286-294.
[3] Jin Cheng, Ming-yang Tang, Zhen-yu Liu, Jian-rong Tan. Direct reliability-based design optimization of uncertain structures with interval parameters[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(11): 841-854.
[4] Zhi-feng Zhang, Yi-xiong Feng, Jian-rong Tan, Wei-qiang Jia, Guo-dong Yi. A novel approach for parallel disassembly design based on a hybrid fuzzy-time model[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(9): 724-736.
[5] Jin Cheng, Gui-fang Duan, Zhen-yu Liu, Xiao-gang Li, Yi-xiong Feng, Xiao-hai Chen. Interval multiobjective optimization of structures based on radial basis function, interval analysis, and NSGA-II[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(10): 774-788.
[6] José D. Martínez-Morales, Elvia R. Palacios-Hernández, Gerardo A. Velázquez-Carrillo. Modeling and multi-objective optimization of a gasoline engine using neural networks and evolutionary algorithms[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(9): 657-670.
[7] Xiao-lei Dong, Sui-qing Liu, Tao Tao, Shu-ping Li, Kun-lun Xin. A comparative study of differential evolution and genetic algorithms for optimizing the design of water distribution systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(9): 674-686.
[8] Ning-yun Lu, Gui-xia Gong, Yi Yang, Jian-hua Lu. Multi-objective process parameter optimization for energy saving in injection molding process[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(5): 382-394.
[9] Med Amine Laribi, Lotfi Romdhane, Sa?d Zeghloul. Analysis and optimal synthesis of single loop spatial mechanisms[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(9): 665-679.
[10] Hai-en Fang, Jie Zhang, Jin-liang Gao. Optimal operation of multi-storage tank multi-source system based on storage policy[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(8): 571-579.
[11] Azuma Okamoto, Mitsumasa Sugawara. Solving composite scheduling problems using the hybrid genetic algorithm[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(12): 953-958.
[12] Hong-li QI, Hui ZHAO, Wei-wen LIU, Hai-bo ZHANG. Parameters optimization and nonlinearity analysis of grating eddy current displacement sensor using neural network and genetic algorithm[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(8): 1205-1212.
[13] Shervin VAKILI, Sied Mehdi FAKHRAIE, Siamak MOHAMMADI, Ali AHMADI. Low-cost fault tolerance in evolvable multiprocessor systems: a graceful degradation approach[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(6): 922-926.
[14] Mohsen GITIZADEH, Mohsen KALANTAR. Optimum allocation of FACTS devices in Fars Regional Electric Network using genetic algorithm based goal attainment[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(4): 478-487.
[15] Peng-fei LIU, Ping XU, Shu-xin HAN, Jin-yang ZHENG. Optimal design of pressure vessel using an improved genetic algorithm[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(9): 1264-1269.