Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2012, Vol. 13 Issue (9): 674-686    DOI: 10.1631/jzus.A1200072
Environmental and Hydraulic Engineering     
A comparative study of differential evolution and genetic algorithms for optimizing the design of water distribution systems
Xiao-lei Dong, Sui-qing Liu, Tao Tao, Shu-ping Li, Kun-lun Xin
College of Environmental Science and Technology, Tongji University, Shanghai 200092, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  The differential evolution (DE) algorithm has been received increasing attention in terms of optimizing the design for the water distribution systems (WDSs). This paper aims to carry out a comprehensive performance comparison between the new emerged DE algorithm and the most popular algorithm—the genetic algorithm (GA). A total of six benchmark WDS case studies were used with the number of decision variables ranging from 8 to 454. A preliminary sensitivity analysis was performed to select the most effective parameter values for both algorithms to enable the fair comparison. It is observed from the results that the DE algorithm consistently outperforms the GA in terms of both efficiency and the solution quality for each case study. Additionally, the DE algorithm was also compared with the previously published optimization algorithms based on the results for those six case studies, indicating that the DE exhibits comparable performance with other algorithms. It can be concluded that the DE is a newly promising optimization algorithm in the design of WDSs.

Key wordsDifferential evolution (DE)      Genetic algorithms (GAs)      Optimization      Water distribution systems (WDSs)     
Received: 18 March 2012      Published: 30 August 2012
CLC:  TU991.3  
Cite this article:

Xiao-lei Dong, Sui-qing Liu, Tao Tao, Shu-ping Li, Kun-lun Xin. A comparative study of differential evolution and genetic algorithms for optimizing the design of water distribution systems. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(9): 674-686.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1200072     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2012/V13/I9/674

[1] Peng Guo, Jun-hong Zhang. Numerical model and multi-objective optimization analysis of vehicle vibration[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(5): 393-412.
[2] Tian-tian Zhang, Wei Huang, Zhen-guo Wang, Li Yan. A study of airfoil parameterization, modeling, and optimization based on the computational fluid dynamics method[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(8): 632-645.
[3] Hossein Rezaei, Ramli Nazir, Ehsan Momeni. Bearing capacity of thin-walled shallow foundations: an experimental and artificial intelligence-based study[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(4): 273-285.
[4] Bao-tong Li, Su-na Yan, Jun Hong. A growth-based topology optimizer for stiffness design of continuum structures under harmonic force excitation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(12): 933-946.
[5] Cheng-ming Lan , Hui Li, Jun-Yi Peng , Dong-Bai Sun . A structural reliability-based sensitivity analysis method using particles swarm optimization: relative convergence rate[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(12): 961-973.
[6] Jin Cheng, Ming-yang Tang, Zhen-yu Liu, Jian-rong Tan. Direct reliability-based design optimization of uncertain structures with interval parameters[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(11): 841-854.
[7] Liang Ye, Yin-fu Jin, Shui-long Shen, Ping-ping Sun, Cheng Zhou. An efficient parameter identification procedure for soft sensitive clays[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(1): 76-88.
[8] Antoine Dumas, Jean-Yves Dantan, Nicolas Gayton, Thomas Bles, Robin Loebl. An iterative statistical tolerance analysis procedure to deal with linearized behavior models[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(5): 353-360.
[9] Qing-long Meng, Xiu-ying Yan, Qing-chang Ren. Global optimal control of variable air volume air-conditioning system with iterative learning: an experimental case study[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(4): 302-315.
[10] Lei Fu, Zhen-ping Feng, Guo-jun Li, Qing-hua Deng, Yan Shi, Tie-yu Gao. Experimental validation of an integrated optimization design of a radial turbine for micro gas turbines[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(3): 241-249.
[11] Wei Wei, Ang Liu, Stephen C. Y. Lu, Thorsten Wuest. A multi-principle module identification method for product platform design[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(1): 1-10.
[12] Abbas Al-Refaie. Applying process analytical technology framework to optimize multiple responses in wastewater treatment process[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(5): 374-384.
[13] Chang-yu Cui, Bao-shi Jiang, You-bao Wang. Node shift method for stiffness-based optimization of single-layer reticulated shells[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(2): 97-107.
[14] Yi-cong Gao, Yi-xiong Feng, Jian-rong Tan. Multi-principle preventive maintenance: a design-oriented scheduling study for mechanical systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(11): 862-872.
[15] Jin Cheng, Gui-fang Duan, Zhen-yu Liu, Xiao-gang Li, Yi-xiong Feng, Xiao-hai Chen. Interval multiobjective optimization of structures based on radial basis function, interval analysis, and NSGA-II[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(10): 774-788.