Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2011, Vol. 12 Issue (6): 499-506    DOI: 10.1631/jzus.C1000201
    
An efficient hardware design for HDTV H.264/AVC encoder
Liang Wei1,2, Dan-dan Ding1,2, Juan Du1,2, Bin-bin Yu1,2, Lu Yu*,1,2
1 Institute of Information and Communication Engineering, Zhejiang University, Hangzhou 310027, China 2 Zhejiang Provincial Key Laboratory of Information Network Technology, Hangzhou 310027, China
Download:   PDF(187KB)
Export: BibTeX | EndNote (RIS)      

Abstract  This paper presents a hardware efficient high definition television (HDTV) encoder for H.264/AVC. We use a two-level mode decision (MD) mechanism to reduce the complexity and maintain the performance, and design a sharable architecture for normal mode fractional motion estimation (NFME), special mode fractional motion estimation (SFME), and luma motion compensation (LMC), to decrease the hardware cost. Based on these technologies, we adopt a four-stage macro-block pipeline scheme using an efficient memory management strategy for the system, which greatly reduces on-chip memory and bandwidth requirements. The proposed encoder uses about 1126k gates with an average Bjontegaard-Delta peak signal-to-noise ratio (BD-PSNR) decrease of 0.5 dB, compared with JM15.0. It can fully satisfy the real-time video encoding for 1080p@30 frames/s of H.264/AVC high profile.

Key wordsH.264/AVC      High-definition television (HDTV)      Hardware      Architecture      Encoder     
Received: 16 June 2010      Published: 07 June 2011
CLC:  TN919.8  
Cite this article:

Liang Wei, Dan-dan Ding, Juan Du, Bin-bin Yu, Lu Yu. An efficient hardware design for HDTV H.264/AVC encoder. Front. Inform. Technol. Electron. Eng., 2011, 12(6): 499-506.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/jzus.C1000201     OR     http://www.zjujournals.com/xueshu/fitee/Y2011/V12/I6/499


An efficient hardware design for HDTV H.264/AVC encoder

This paper presents a hardware efficient high definition television (HDTV) encoder for H.264/AVC. We use a two-level mode decision (MD) mechanism to reduce the complexity and maintain the performance, and design a sharable architecture for normal mode fractional motion estimation (NFME), special mode fractional motion estimation (SFME), and luma motion compensation (LMC), to decrease the hardware cost. Based on these technologies, we adopt a four-stage macro-block pipeline scheme using an efficient memory management strategy for the system, which greatly reduces on-chip memory and bandwidth requirements. The proposed encoder uses about 1126k gates with an average Bjontegaard-Delta peak signal-to-noise ratio (BD-PSNR) decrease of 0.5 dB, compared with JM15.0. It can fully satisfy the real-time video encoding for 1080p@30 frames/s of H.264/AVC high profile.

关键词: H.264/AVC,  High-definition television (HDTV),  Hardware,  Architecture,  Encoder  
[1] Feng WEI, Wei-xia ZOU. Suboptimal network coding subgraph algorithms for 5G minimum-cost multicast networks[J]. Front. Inform. Technol. Electron. Eng., 2018, 19(5): 662-673.
[2] Xiang-ke LIAO, Kai LU, Can-qun YANG, Jin-wen LI, Yuan YUAN, Ming-che LAI, Li-bo HUANG, Ping-jing LU, Jian-bin FANG, Jing REN, Jie SHEN. Moving from exascale to zettascale computing: challenges and techniques[J]. Front. Inform. Technol. Electron. Eng., 2018, 19(10): 1236-1244.
[3] Xiang-hui XIE, Xun JIA. Exploring high-performance processor architecture beyond the exascale[J]. Front. Inform. Technol. Electron. Eng., 2018, 19(10): 1224-1229.
[4] Jian CHENG , Pei-song WANG, Gang LI, Qing-hao HU, Han-qing LU. Recent advances in efficient computation of deep convolutional neural networks[J]. Front. Inform. Technol. Electron. Eng., 2018, 19(1): 64-77.
[5] Jiong FU, Xue-shan LUO, Ai-min LUO, Jun-xian LIU. Enterprise-level business component identification in business architecture integration   [J]. Front. Inform. Technol. Electron. Eng., 2017, 18(9): 1320-1335.
[6] Zong-feng QI, Qiao-qiao LIU, Jun WANG, Jian-xun LI. Battle damage assessment based on an improved Kullback-Leibler divergence sparse autoencoder[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(12): 1991-2000.
[7] Mian CHENG, Jin-shu SU, Jing XU. Real-time pre-processing system with hardware accelerator for mobile core networks[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(11): 1720-1719.
[8] You-bo Liu, Jun-yong Liu, Gareth Taylor, Ting-jian Liu, Jing Gou, Xi Zhang. Situational awareness architecture for smart grids developed in accordance with dispatcher’s thought process: a review[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1107-1121.
[9] Alireza Parvizi-Mosaed, Shahrouz Moaven, Jafar Habibi, Ghazaleh Beigi, Mahdieh Naser-Shariat. Towards a self-adaptive service-oriented methodology based on extended SOMA[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(1): 43-69.
[10] Xu-dong Jiang, Bin Sheng, Wei-yao Lin, Wei Lu, Li-zhuang Ma. Image anti-aliasing techniques for Internet visual media processing: a review[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(9): 717-728.
[11] Han Qi, Muhammad Shiraz, Jie-yao Liu, Abdullah Gani, Zulkanain ABDUL Rahman, Torki A. Altameem. Data center network architecture in cloud computing: review, taxonomy, and open research issues[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(9): 776-793.
[12] Kai Huang, De Ma, Rong-jie Yan, Hai-tong Ge, Xiao-lang Yan. High throughput VLSI architecture for H.264/AVC context-based adaptive binary arithmetic coding (CABAC) decoding[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(6): 449-463.
[13] Du Wan Cheun, Hyun Jung La, Soo Dong Kim. A taxonomic framework for autonomous service management in Service-Oriented Architecture[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(5): 339-354.
[14] Xiang Wang, Yong Ding, Ming-yu Liu, Xiao-lang Yan. Efficient implementation of a cubic-convolution based image scaling engine[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(9): 743-753.
[15] Xiao-ying Wang, Wen-ting Guo, Yang-yang Peng, Wen-quan Sui. GaAs pHEMT multi-band/multi-mode SP9T switch for quad-band GSM and UMTS handsets applications[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(4): 317-322.