Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2010, Vol. 11 Issue (1): 56-62    DOI: 10.1631/jzus.C0910176
    
Modeling of hydraulic turbine systems based on a Bayesian-Gaussian neural network driven by sliding window data
Yi-jian LIU*,1, Yan-jun FANG2, Xue-mei ZHU1
1 School of Electric & Automation Engineering, Nanjing Normal University, Nanjing 210042, China 2 Department of Automation, Wuhan University, Wuhan 430072, China
Download:   PDF(337KB)
Export: BibTeX | EndNote (RIS)      

Abstract  In this paper, a novel Bayesian-Gaussian neural network (BGNN) is proposed and applied to on-line modeling of a hydraulic turbine system (HTS). The new BGNN takes account of the complex nonlinear characteristics of HTS. Two redefined training procedures of the BGNN include the off-line training of the threshold matrix parameters, optimized by swarm optimization algorithms, and the on-line BGNN predictive application driven by the sliding window data method. The characteristics models of an HTS are identified using the new BGNN method and simulation results are presented which show the effectiveness of the BGNN in addressing modeling problems of HTS.

Key wordsBayesian-Gaussian neural network (BGNN)      Hydraulic turbine      Modeling      Sliding window data     
Received: 29 March 2009      Published: 30 November 2009
CLC:  TP18  
Fund:  Project  (Nos. 60704024 and 60772107) supported by the  National Natural Science Foundation of China
Cite this article:

Yi-jian LIU, Yan-jun FANG, Xue-mei ZHU. Modeling of hydraulic turbine systems based on a Bayesian-Gaussian neural network driven by sliding window data. Front. Inform. Technol. Electron. Eng., 2010, 11(1): 56-62.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/jzus.C0910176     OR     http://www.zjujournals.com/xueshu/fitee/Y2010/V11/I1/56


Modeling of hydraulic turbine systems based on a Bayesian-Gaussian neural network driven by sliding window data

In this paper, a novel Bayesian-Gaussian neural network (BGNN) is proposed and applied to on-line modeling of a hydraulic turbine system (HTS). The new BGNN takes account of the complex nonlinear characteristics of HTS. Two redefined training procedures of the BGNN include the off-line training of the threshold matrix parameters, optimized by swarm optimization algorithms, and the on-line BGNN predictive application driven by the sliding window data method. The characteristics models of an HTS are identified using the new BGNN method and simulation results are presented which show the effectiveness of the BGNN in addressing modeling problems of HTS.

关键词: Bayesian-Gaussian neural network (BGNN),  Hydraulic turbine,  Modeling,  Sliding window data 
[1] Ke GUO, Xia-bi LIU, Lun-hao GUO , Zong-jie LI, Zeng-min GENG. A new constrained maximum margin approach to discriminative learning of Bayesian classifiers[J]. Front. Inform. Technol. Electron. Eng., 2018, 19(5): 639-650.
[2] Chun-lin ZHOU, Bo-xing WANG, Hong-xiang ZHOU, Jing-lan LI, Rong XIONG. Dynamic modeling of a wave glider[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(9): 1295-1304.
[3] Jian-zhi LI , Bo AI , Rui-si HE , Qi WANG , Mi YANG , Bei ZHANG , Ke GUAN , Dan-ping HE , Zhang-dui ZHONG , Ting ZHOU , Nan LI. Indoor massive multiple-input multiple-output channel characterization and performance evaluation[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(6): 773-787.
[4] Wei ZHANG , Jia-yu ZHUANG , Xi YONG , Jian-kou LI , Wei CHEN , Zhe-min LI. Personalized topic modeling for recommending user-generated content[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(5): 708-718.
[5] Feng SHENG, Liang DOU, Zong-yuan YANG. Mechanized semantics and refinement of UML-Statecharts[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(11): 1773-1783.
[6] Hong-yang LU , Qie-gen LIU, Yu-hao WANG , Xiao-hua DENG. A two-stage parametric subspace model for efficient contrast-preserving decolorization[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(11): 1874-1882.
[7] Hong SONG, Jia-heng ZHANG, Ping YANG, Hao-cai HUANG, Shu-yue ZHAN, Teng-jun LIU, Yi-lu GUO, Hang-zhou WANG, Hui HUANG, Quan-quan MU, Mei-fen FANG, Ming-yuan YANG. Modeling of a dynamic dual-input dual-output fast steering mirror system[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(10): 1488-1498.
[8] Mohammad Alshayeb, Nasser Khashan, Sajjad Mahmood. A framework for an integrated unified modeling language[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(2): 143-159.
[9] Xin Li, Jin Sun, Fu Xiao. An efficient prediction framework for multi-parametric yield analysis under parameter variations[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(12): 1344-1359.
[10] Xi-ming Li, Ji-hong Ouyang, You Lu. Topic modeling for large-scale text data[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(6): 457-465.
[11] Xiao-fang Huang, Shou-qian Sun, Ke-jun Zhang, Tian-ning Xu, Jian-feng Wu, Bin Zhu. A method of shadow puppet figure modeling and animation[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 367-379.
[12] Hamza Khan, Jamshed Iqbal, Khelifa Baizid, Teresa Zielinska. Longitudinal and lateral slip control of autonomous wheeled mobile robot for trajectory tracking[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(2): 166-172.
[13] Zhi-qiang Feng, Cun-gen Liu, Hu Huang. Knowledge modeling based on interval-valued fuzzy rough set and similarity inference: prediction of welding distortion[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(8): 636-650.
[14] Ming Yang, Ying-ming Li, Zhongfei (Mark) Zhang. Scientific articles recommendation with topic regression and relational matrix factorization[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(11): 984-998.
[15] Bin Chen, Lao-bing Zhang, Xiao-cheng Liu, Hans Vangheluwe. Activity-based simulation using DEVS: increasing performance by an activity model in parallel DEVS simulation[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(1): 13-30.