Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2016, Vol. 17 Issue (12): 1287-1304    DOI: 10.1631/FITEE.1601365
    
Finite-sensor fault-diagnosis simulation study of gas turbine engine using information entropy and deep belief networks
De-long Feng, Ming-qing Xiao, Ying-xi Liu, Hai-fang Song, Zhao Yang, Ze-wen Hu
Aeronautics and Astronautics Engineering College, Air Force Engineering University, Xi'an 710038, China; Air Force Xi'an Flight Academy, Xi'an 710306, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Precise fault diagnosis is an important part of prognostics and health management. It can avoid accidents, extend the service life of the machine, and also reduce maintenance costs. For gas turbine engine fault diagnosis, we cannot install too many sensors in the engine because the operating environment of the engine is harsh and the sensors will not work in high temperature, at high rotation speed, or under high pressure. Thus, there is not enough sensory data from the working engine to diagnose potential failures using existing approaches. In this paper, we consider the problem of engine fault diagnosis using finite sensory data under complicated circumstances, and propose deep belief networks based on information entropy, IE-DBNs, for engine fault diagnosis. We first introduce several information entropies and propose joint complexity entropy based on single signal entropy. Second, the deep belief networks (DBNs) is analyzed and a logistic regression layer is added to the output of the DBNs. Then, information entropy is used in fault diagnosis and as the input for the DBNs. Comparison between the proposed IE-DBNs method and state-of-the-art machine learning approaches shows that the IE-DBNs method achieves higher accuracy.

Key wordsDeep belief networks (DBNs)      Fault diagnosis      Information entropy      Engine     
Received: 05 July 2016      Published: 13 December 2016
CLC:  TP391  
  V267.3  
Cite this article:

De-long Feng, Ming-qing Xiao, Ying-xi Liu, Hai-fang Song, Zhao Yang, Ze-wen Hu. Finite-sensor fault-diagnosis simulation study of gas turbine engine using information entropy and deep belief networks. Front. Inform. Technol. Electron. Eng., 2016, 17(12): 1287-1304.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/FITEE.1601365     OR     http://www.zjujournals.com/xueshu/fitee/Y2016/V17/I12/1287


基于信息熵和深度置信网络的涡轮发动机在有限传感器下的故障诊断仿真研究

概要:精确故障诊断是预测与健康管理的一个重要部分。它能避免事故的发生,延长设备使用寿命,还能降低设备维修保养费用。本文研究涡轮发动机的故障诊断。由于发动机工作在高温、高压、高转速的严峻环境中,不能安装过多传感器,因此我们无法获得足够多的传感器数据,以至于采用现有算法不能进行精确的潜在故障诊断。本文针对复杂环境下有限传感器数据的发动机故障诊断问题,提出了一种基于信息熵的深度置信网络方法。首先介绍了几种信息熵,并基于单信号熵提出了联合复杂信息熵。其次,分析了深度置信网络的构成,提出了基于信息熵的深度置信网络方法。验证实验表明,与现有的机器学习算法比较,该方法的诊断精度大大提高。

关键词: 深度置信网络,  信息熵,  故障诊断,  发动机 
[1] Jun-hong Zhang, Yu Liu. Application of complete ensemble intrinsic time-scale decomposition and least-square SVM optimized using hybrid DE and PSO to fault diagnosis of diesel engines[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 272-286.
[2] Bo-hu Li, Hui-yang Qu, Ting-yu Lin, Bao-cun Hou, Xiang Zhai, Guo-qiang Shi, Jun-hua Zhou, Chao Ruan. A swarm intelligence design based on a workshop of meta-synthetic engineering[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 149-152.
[3] Adel Khosravi, Yousef Seifi Kavian. Autonomous fault-diagnosis and decision-making algorithm for determining faulty nodes in distributed wireless networks[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 885-896.
[4] Bo Liu, Ming Chen, Bo Xu, Hui Hu, Chao Hu, Qing-yun Zuo, Chang-you Xing. An OpenFlow-based performance-oriented multipath forwarding scheme in datacenters[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(7): 647-660.
[5] Xun Liu, Yin Zhang, San-yuan Zhang, Ying Wang, Zhong-yan Liang, Xiu-zi Ye. Detection of engineering vehicles in high-resolution monitoring images[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 346-357.
[6] Ignacio Marin, Francisco Ortin, German Pedrosa, Javier Rodriguez. Generating native user interfaces for multiple devices by means of model transformation[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(12): 995-1017.
[7] Juan J. Cuadrado-Gallego, Alain Abran, Pablo Rodriguez-Soria, Miguel A. Lara. An experimental study on the conversion between IFPUG and UCP functional size measurement units[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(3): 161-173.
[8] Lei He, Chang-fu Zong, Chang Wang. Driving intention recognition and behaviour prediction based on a double-layer hidden Markov model[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(3): 208-217.
[9] Bahareh Zibanezhad, Kamran Zamanifar, Razieh Sadat Sadjady, Yousef Rastegari. Applying gravitational search algorithm in the QoS-based Web service selection problem[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(9): 730-742.
[10] Xiang Wang, Yong Ding, Ming-yu Liu, Xiao-lang Yan. Efficient implementation of a cubic-convolution based image scaling engine[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(9): 743-753.
[11] Yuan-di Zhao, Jun-jie Cao, Zhi-xun Su, Zhi-yang Li. Efficient reconstruction of non-simple curves[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(7): 523-532.
[12] Zhen-guo Ma, Feng Yu, Rui-feng Ge, Ze-ke Wang. An efficient radix-2 fast Fourier transform processor with ganged butterfly engines on field programmable gate arrays[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(4): 323-329.
[13] Xi-chuan Zhou, Hai-bin Shen. Notifiable infectious disease surveillance with data collected by search engine[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(4): 241-248.
[14] Omid BUSHEHRIAN. Automatic actor-based program partitioning[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(1): 45-55.