Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2015, Vol. 16 Issue (12): 995-1017    DOI: 10.1631/FITEE.1500083
    
Generating native user interfaces for multiple devices by means of model transformation
Ignacio Marin, Francisco Ortin, German Pedrosa, Javier Rodriguez
Department of Research and Development, CTIC Foundation, Gijon 33203, Spain; Department of Computer Science, University of Oviedo, Oviedo 33007, Spain
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  In the last years, the types of devices used to access information systems have notably increased using different operating systems, screen sizes, interaction mechanisms, and software features. This device fragmentation is an important issue to tackle when developing native mobile service front-end applications. To address this issue, we propose the generation of native user interfaces (UIs) by means of model transformations, following the model-based user interface (MBUI) paradigm. The resulting MBUI framework, called LIZARD, generates applications for multiple target platforms. LIZARD allows the definition of applications at a high level of abstraction, and applies model transformations to generate the target native UI considering the specific features of target platforms. The generated applications follow the UI design guidelines and the architectural and design patterns specified by the corresponding operating system manufacturer. The objective is not to generate generic applications following the lowest-common-denominator approach, but to follow the particular guidelines specified for each target device. We present an example application modeled in LIZARD, generating different UIs for Windows Phone and two types of Android devices (smartphones and tablets).

Key wordsModel-to-model transformation      Native user interfaces      Model-based user interfaces      Model-driven engineering     
Received: 19 March 2015      Published: 07 December 2015
CLC:  TP311  
Cite this article:

Ignacio Marin, Francisco Ortin, German Pedrosa, Javier Rodriguez. Generating native user interfaces for multiple devices by means of model transformation. Front. Inform. Technol. Electron. Eng., 2015, 16(12): 995-1017.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/FITEE.1500083     OR     http://www.zjujournals.com/xueshu/fitee/Y2015/V16/I12/995


使用模型变换为多种终端生成原生用户界面

目的:近年来,使用不同操作系统、屏幕尺寸、交互机制和软件特征访问信息系统的终端种类不断增加。为此,本研究解决开发原生移动服务前端应用(front-end applications)过程中终端类型碎片化(fragmentation)问题。
创新点:遵照基于模型的用户界面(MBUI)范式,使用模型变换生成原生用户界面。本研究并非遵循“最小公分母方法”生成通用应用,而是根据特定目标终端限定的特别规则生成应用。
方法:本文提出LIZARD,这一MBUI框架可以为多种目标平台生成应用。LIZARD支持在高抽象层级定义应用,并在考虑目标平台特性的前提下使用模型变换生成目标原生用户界面。其生成的应用符合用户界面设计准则,符合相应操作系统所限定的架构及设计模式。
结论:本文给出一个示例,使用LIZARD建模,可以分别生成用于Windows Phone、Android智能手机、Android平板等不同终端用户界面。评估结果显示,对于这三种应用,用户平均满意度全部超过7.7分(满分9分)。LIZARD原型、源代码及文中给出的应用示例,可从https://bitbucket.org/fundacionctic/lizard自由获取。

关键词: 模型-模型变换,  原生用户界面,  基于模型用户界面,  模型驱动工程 
[1] Deng Chen, Yan-duo Zhang, Wei Wei, Shi-xun Wang, Ru-bing Huang, Xiao-lin Li, Bin-bin Qu, Sheng Jiang. Efficient vulnerability detection based on an optimized rule-checking static analysis technique[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 332-345.
[2] Long-xiang Wang, Xiao-she Dong, Xing-jun Zhang, Yin-feng Wang, Tao Ju, Guo-fu Feng. TextGen: a realistic text data content generation method for modern storage system benchmarks[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(10): 982-993.
[3] Shahab Pourtalebi, Imre Horváth. Information schema constructs for defining warehouse databases of genotypes and phenotypes of system manifestation features[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 862-884.
[4] Saif Ur Rehman Khan, Sai Peck Lee, Mohammad Dabbagh, Muhammad Tahir, Muzafar Khan, Muhammad Arif. RePizer: a framework for prioritization of software requirements[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 750-765.
[5] Mohammad Alshayeb, Nasser Khashan, Sajjad Mahmood. A framework for an integrated unified modeling language[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(2): 143-159.
[6] Hui-zong Li, Xue-gang Hu, Yao-jin Lin, Wei He, Jian-han Pan. A social tag clustering method based on common co-occurrence group similarity[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(2): 122-134.
[7] Dipayan DEV,Ripon PATGIRI. Dr. Hadoop: an infinite scalable metadata management for Hadoop—How the baby elephant becomes immortal[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(1): 15-31.
[8] Hong Yin, Shu-qiang Yang, Xiao-qian Zhu, Shao-dong Ma, Lu-min Zhang. Symbolic representation based on trend features for knowledge discovery in long time series[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(9): 744-758.
[9] Ping Xie, Jian-zhong Huang, Er-wei Dai, Qiang Cao, Chang-sheng Xie. An efficient data layout scheme for better I/O balancing in RAID-6 storage systems[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 335-345.
[10] Xiao-xia Zhang, Qiang-hua Xiao, Bin Li, Sai Hu, Hui-jun Xiong, Bi-hai Zhao. Overlap maximum matching ratio (OMMR): a new measure to evaluate overlaps of essential modules[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(4): 293-300.
[11] Yu-xiang Li, Yin-liang Zhao, Bin Liu, Shuo Ji. Optimization of thread partitioning parameters in speculative multithreading based on artificial immune algorithm[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(3): 205-216.
[12] László Lengyel, Hassan Charaf. Test-driven verification/validation of model transformations[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(2): 85-97.
[13] Alireza Parvizi-Mosaed, Shahrouz Moaven, Jafar Habibi, Ghazaleh Beigi, Mahdieh Naser-Shariat. Towards a self-adaptive service-oriented methodology based on extended SOMA[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(1): 43-69.
[14] Zi-ying Dai, Xiao-guang Mao, Li-qian Chen, Yan Lei. Automatic recovery from resource exhaustion exceptions by collecting leaked resources[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(8): 622-635.
[15] Juan J. Cuadrado-Gallego, Alain Abran, Pablo Rodriguez-Soria, Miguel A. Lara. An experimental study on the conversion between IFPUG and UCP functional size measurement units[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(3): 161-173.