Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2015, Vol. 16 Issue (10): 829-837    DOI: 10.1631/FITEE.1500045
    
带有几何形变的变形图像配准
Yu Liu, Bo Zhu
School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
Deformable image registration with geometric changes
Yu Liu, Bo Zhu
School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
 全文: PDF 
摘要: 目的:几何形态的变化为变形图像配准带来了许多障碍。本文提出一个用以描述几何形变的数学模型,可以在变形图像配准中实现源图像与目标图像之间的平滑变换。
创新点:提出一个新的图像配准模型,可以显著抑制局部几何形变对图像配准的影响并极大地提高配准准确性。
方法:本文提出的配准模型中主要引入一个可以将几何形变区域正则化的L1范数。这一稀疏诱导范数可以通过抑制局部变换来实现平滑的全局变换。为保证算法的稳定性和快速收敛,文本对算法的数值解进行了详细讨论。
结论:通过将算法应用于真实采集的外伤性脑损伤图像,验证了算法的实用性和有效性。实验显示使用本文所提算法对目标图像进行的重建比使用普通的弹性配准模型具有更高的准确性。
关键词: 几何形变图像配准稀疏性创伤性脑损伤    
Abstract: Geometric changes present a number of difficulties in deformable image registration. In this paper, we propose a global deformation framework to model geometric changes whilst promoting a smooth transformation between source and target images. To achieve this, we have developed an innovative model which significantly reduces the side effects of geometric changes in image registration, and thus improves the registration accuracy. Our key contribution is the introduction of a sparsity-inducing norm, which is typically L1 norm regularization targeting regions where geometric changes occur. This preserves the smoothness of global transformation by eliminating local transformation under different conditions. Numerical solutions are discussed and analyzed to guarantee the stability and fast convergence of our algorithm. To demonstrate the effectiveness and utility of this method, we evaluate it on both synthetic data and real data from traumatic brain injury (TBI). We show that the transformation estimated from our model is able to reconstruct the target image with lower instances of error than a standard elastic registration model.
Key words: Geometric changes    Image registration    Sparsity    Traumatic brain injury (TBI)
收稿日期: 2015-02-05 出版日期: 2015-10-08
CLC:  TP391.4  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Yu Liu
Bo Zhu

引用本文:

Yu Liu, Bo Zhu. Deformable image registration with geometric changes. Front. Inform. Technol. Electron. Eng., 2015, 16(10): 829-837.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/FITEE.1500045        http://www.zjujournals.com/xueshu/fitee/CN/Y2015/V16/I10/829

[1] Yuan-ping Nie, Yi Han, Jiu-ming Huang, Bo Jiao, Ai-ping Li. 基于注意机制编码解码模型的答案选择方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 535-544.
[2] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . 基于可靠特征点分配算法的鲁棒性跟踪框架[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 545-558.
[3] Yue-ting Zhuang, Fei Wu, Chun Chen, Yun-he Pan. 挑战与希望:AI2.0时代从大数据到知识[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 3-14.
[4] Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang. 基于众包标签数据深度学习的命名实体消歧算法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 97-106.
[5] M. F. Kazemi, M. A. Pourmina, A. H. Mazinan. 图像水印框架的层级-方向分解分析[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1199-1217.
[6] Guang-hui Song, Xiao-gang Jin, Gen-lang Chen, Yan Nie. 基于两级层次特征学习的图像分类方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 897-906.
[7] Jia-yin Song, Wen-long Song, Jian-ping Huang, Liang-kuan Zhu. 基于边界分析的森林冠层半球图像中心点定位与分割[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 741-749.
[8] Gao-li Sang, Hu Chen, Ge Huang, Qi-jun Zhao. 基于稠密多变量标签的“连续”头部姿态估计方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 516-526.
[9] Xi-chuan Zhou, Fang Tang, Qin Li, Sheng-dong Hu, Guo-jun Li, Yun-jian Jia, Xin-ke Li, Yu-jie Feng. 基于多维尺度拉普拉斯分析方法的全球流感疫情监测[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(5): 413-421.
[10] Chu-hua Huang, Dong-ming Lu, Chang-yu Diao. 基于多尺度轮廓插值生成准密集时变点云模型序列[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(5): 422-434.
[11] Xiao-hu Ma, Meng Yang, Zhao Zhang. 局部不相关的局部判别嵌入人脸识别算法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(3): 212-223.
[12] Fu-xiang Lu, Jun Huang. 超越隐主题包模型:针对场景类别识别的空间金字塔匹配[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(10): 817-828.
[13] Zheng-wei Huang, Wen-tao Xue, Qi-rong Mao. 基于无监督特征学习的语音情感识别方法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 358-366.
[14] Xun Liu, Yin Zhang, San-yuan Zhang, Ying Wang, Zhong-yan Liang, Xiu-zi Ye. 基于高清监控图像的工程车辆检测算法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 346-357.
[15] Xiao-fang Huang, Shou-qian Sun, Ke-jun Zhang, Tian-ning Xu, Jian-feng Wu, Bin Zhu. 一种皮影人物建模及动画生成方法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 367-379.