文章快速检索     高级检索
  浙江大学学报(理学版)  2018, Vol. 45 Issue (5): 549-554, 561  DOI:10.3785/j.issn.1008-9497.2018.05.006
0

引用本文 [复制中英文]

时统业, 曾志红, 曹俊飞. η凸函数的Riemann-Liouville分数阶积分的Hermite-Hadamard型不等式[J]. 浙江大学学报(理学版), 2018, 45(5): 549-554, 561. DOI: 10.3785/j.issn.1008-9497.2018.05.006.
[复制中文]
SHI Tongye, ZENG Zhihong, CAO Junfei. Hermite-Hadamard type inequalities involving Riemann-Liouville fractional integrals for η-convex functions[J]. Journal of Zhejiang University(Science Edition), 2018, 45(5): 549-554, 561. DOI: 10.3785/j.issn.1008-9497.2018.05.006.
[复制英文]

基金项目

国家自然科学基金青年科学基金项目(11301090);广东省自然科学基金自由申请项目(2015A030313896);广东省特色创新项目(自然科学)(2016KTSCX094);广州市科学(技术)研究专项一般项目(201707010230);广东第二师范学院教授博士专项科研经费资助项目(2015ARF24)

作者简介

时统业(1963-), ORCID: http://orcid.org/0000-0001-6142-8906, 男, 硕士, 副教授, 主要从事不等式研究

通信作者

曾志红, ORCID: http://orcid.org/0000-0001-9684-1397, E-mail: zhzeng@gdei.edu.cn

文章历史

收稿日期:2018-01-04
η凸函数的Riemann-Liouville分数阶积分的Hermite-Hadamard型不等式
时统业1 , 曾志红2 , 曹俊飞3     
1. 海军指挥学院, 江苏 南京 211800;
2. 广东第二师范学院 学报编辑部, 广东 广州 510303;
3. 广东第二师范学院 数学系, 广东 广州 510303
摘要: 对已有的2个η凸函数的分数阶积分的Hermite-Hadamard型不等式进行了改进.在一阶导函数的绝对值为η凸函数的情况下,利用涉及一阶导函数的分数阶积分恒等式,得到了新的分数阶积分的Hermite-Hadamard型不等式.
关键词: η凸函数    Hermite-Hadamard型不等式    分数阶积分    
Hermite-Hadamard type inequalities involving Riemann-Liouville fractional integrals for η-convex functions
SHI Tongye1, ZENG Zhihong2, CAO Junfei3     
1. PLA Naval Command College, Nanjing 211800, China;
2. Editorial Department of Journal, Guangdong University of Education, Guangzhou 510303, China;
3. Department of Mathematics, Guangdong University of Education, Guangzhou 510303, China
Abstract: Two existing Hermite-Hadamard type inequalities involving fractional integrals for η-convex functions are improved. By using the fractional integral identities embedding the first order derivative function, new Hermite-Hadamard type inequalities involving fractional integrals are obtained provided that the absolute value of the first derivative function is η-convex function.
Key words: η-convex function    Hermite-Hadamard type inequality    fractional integral    
0 引言

f是区间[ab]上的凸函数,则对f在区间[ab]上的算术平均值有以下估计:

$ f\left( {\frac{{a + b}}{2}} \right) \le \frac{1}{{b - a}}\int_a^b {f\left( x \right){\rm{d}}x} \le \frac{{f\left( a \right) + f\left( b \right)}}{2}, $ (1)

双边不等式(1)被称为Hermite-Hadamard不等式.关于Hermite-Hadamard不等式的各种改进、加细和推广,可参见文献[1-9].

最近,作为通常凸函数的推广,文献[10]引入了η凸函数的概念.

定义1 [10]  设区间$ I \subseteq R$,二元函数ηR×RRfIR,若对任意xyIt∈[0, 1],有

$ f\left( {tx + \left( {1 - t} \right)y} \right) \le f\left( y \right) + t\eta \left( {f\left( x \right),f\left( y \right)} \right), $

则称f是区间I上的η凸函数.

$\eta \left( {x, y} \right) = x - y $时,η凸函数即为通常的凸函数.

定理1 [11] (η凸函数的Hermite-Hadamard型不等式)若f:[ab]→Rη凸函数,η$f\left( {\left[ {a, b} \right]} \right) \times f([a, b]) $上有上界Mη,则有

$ \begin{array}{l} f\left( {\frac{{a + b}}{2}} \right) - \frac{1}{2}{M_\eta } \le \frac{1}{{b - a}}\int_a^b {f\left( x \right){\rm{d}}x} \le \frac{{f\left( a \right) + f\left( b \right)}}{2} + \\ \;\;\;\;\;\;\;\;\;\frac{1}{4}\left[ {\eta \left( {f\left( a \right),f\left( b \right)} \right) + \eta \left( {f\left( b \right),f\left( a \right)} \right)} \right] \le \\ \;\;\;\;\;\;\;\;\;\frac{{f\left( a \right) + f\left( b \right)}}{2} + \frac{1}{2}{M_\eta }. \end{array} $

定理2 [11] (η凸函数的Hermite-Hadamard-Fejér型不等式)若f:[ab]→Rη凸函数,η$ f\left( {\left[ {a, b} \right]} \right) \times f([a, b])$上有上界,$ g:{\rm{ }}\left[ {a, b} \right] \to \left( {0, \infty } \right)$是可积函数且关于$\frac{{a + b}}{2} $对称,则有

$ \begin{array}{l} f\left( {\frac{{a + b}}{2}} \right)\int_a^b {g\left( x \right){\rm{d}}x} - \\ \;\;\;\;\;\;\;\;\frac{1}{2}\int_a^b {\eta \left( {f\left( {a + b - x} \right),f\left( x \right)} \right)g\left( x \right){\rm{d}}x} \le \\ \;\;\;\;\;\;\;\;\int_a^b {f\left( x \right)g\left( x \right){\rm{d}}x} \le \frac{{f\left( a \right) + f\left( b \right)}}{2}\int_a^b {g\left( x \right){\rm{d}}x} + \\ \;\;\;\;\;\;\;\;\frac{{\eta \left( {f\left( a \right),f\left( b \right)} \right) + \eta \left( {f\left( b \right),f\left( a \right)} \right)}}{{2\left( {b - a} \right)}}\int_a^b {\left( {b - x} \right)g\left( x \right){\rm{d}}x} . \end{array} $

近年来,国内外研究者利用分数阶积分建立了分数阶的Hermite-Hadamard型不等式[12-18].

定义2  设α>0,f在[ab]上勒贝格可积,则函数fα阶左Riemann-Liouville分数阶积分和α阶右Riemann-Liouville分数阶积分分别定义为

$ \begin{array}{*{20}{c}} {J_a^{{\alpha _ + }}f\left( x \right) = \frac{1}{{\Gamma \left( \alpha \right)}}\int_a^x {{{\left( {x - t} \right)}^{\alpha - 1}}f\left( t \right){\rm{d}}t} ,}&{x > a,} \end{array} $
$ \begin{array}{*{20}{c}} {J_b^{{\alpha _ - }}f\left( x \right) = \frac{1}{{\Gamma \left( \alpha \right)}}\int_x^b {{{\left( {x - t} \right)}^{\alpha - 1}}f\left( t \right){\rm{d}}t} ,}&{x > b,} \end{array} $

其中Γ(α)是Gamma函数,即

$ \Gamma \left( \alpha \right) = \int_0^{ + \infty } {{{\rm{e}}^{ - t}}{t^{\alpha - 1}}{\rm{d}}t} . $

方便起见,在下文的引理和定理中均假设

$ \begin{array}{*{20}{c}} {p \in \left( {0,1} \right),}&{\xi = pa + \left( {1 - p} \right)b,} \end{array} $

并且记

$ {K_1} = \frac{{\Gamma \left( {\alpha + 1} \right)}}{{2{{\left( {b - a} \right)}^\alpha }}}\left[ {J_a^{{\alpha _ + }}\left( b \right) + J_b^{{\alpha _ - }}\left( a \right)} \right], $
$ \begin{array}{l} {K_2} = \frac{{p\Gamma \left( {\alpha + 1} \right)}}{{{{\left( {1 - p} \right)}^\alpha }{{\left( {b - a} \right)}^\alpha }}}J_a^{{\alpha _ + }}f\left( \xi \right) + \\ \;\;\;\;\;\;\;\;\frac{{\left( {1 - p} \right)\Gamma \left( {\alpha + 1} \right)}}{{{p^\alpha }{{\left( {b - a} \right)}^\alpha }}}J_a^{{\alpha _ - }}f\left( \xi \right). \end{array} $

定理3 [19] (η凸函数的Hermite-Hadamard型分数阶积分不等式)若f:[ab]→Rη凸函数,η$f\left( {\left[ {a, b} \right]} \right) \times f([a, b]) $上有上界Mηα>0,则有

$ \begin{array}{l} f\left( {\frac{{a + b}}{2}} \right) - {M_\eta } \le {K_1} \le \frac{{f\left( a \right) + f\left( b \right)}}{2} + \\ \;\;\;\;\;\;\;\frac{\alpha }{{2\left( {\alpha + 1} \right)}}\left[ {\eta \left( {f\left( a \right),f\left( b \right)} \right) + \eta \left( {f\left( b \right),f\left( a \right)} \right)} \right] \le \\ \;\;\;\;\;\;\;\frac{{f\left( a \right) + f\left( b \right)}}{2} + \frac{\alpha }{{\alpha + 1}}{M_\eta }. \end{array} $ (2)

引理1 [13]   设f:[ab]→R在(ab)可微,f′在[ab]上勒贝格可积,α>0,则有

$ \begin{array}{l} \frac{{f\left( a \right) + f\left( b \right)}}{2} - {K_1} = \\ \;\;\;\;\;\;\frac{{b - a}}{2}\int_0^1 {\left[ {{{\left( {1 - t} \right)}^\alpha } - {t^\alpha }} \right]f'\left( {ta + \left( {1 - t} \right)b} \right){\rm{d}}t} . \end{array} $

利用引理1,由文献[19]可得η凸函数的Hermite-Hadamard型分数阶积分不等式.

定理4 [19]  设f:[ab]→R在(ab)可微,|f′|是[ab]上的η凸函数,α>0,则有

$ \begin{array}{l} \left| {\frac{{f\left( a \right) + f\left( b \right)}}{2} - {K_1}} \right| \le \\ \;\;\;\;\;\;\frac{{b - \alpha }}{{2\left( {\alpha + 1} \right)}}\left( {1 - \frac{1}{{{2^\alpha }}}} \right)\left( {2\left| {f'\left( b \right)} \right| + \eta \left( {\left| {f'\left( a \right)} \right|,\left| {f'\left( b \right)} \right|} \right)} \right). \end{array} $

η(x, y)=x-y,即当f′是[ab]上的凸函数时,由定理4得到文献[13]中凸函数的Hermite-Hadamard型分数阶积分不等式.

引理2 [14]  设f:[ab]→R在(ab)可微,f′在[ab]上勒贝格可积,α>0,则有

$ f\left( {\frac{{a + b}}{2}} \right) - {K_1} = \frac{{b - a}}{2}\sum\limits_{k = 1}^4 {{I_k}} , $

其中,

$ {I_1} = \int_0^{\frac{1}{2}} {{t^\alpha }f'\left( {tb + \left( {1 - t} \right)a} \right){\rm{d}}t} , $
$ {I_2} = \int_0^{\frac{1}{2}} {\left( { - {t^\alpha }} \right)f'\left( {ta + \left( {1 - t} \right)b} \right){\rm{d}}t} , $
$ {I_3} = \int_{\frac{1}{2}}^1 {\left( {{t^\alpha } - 1} \right)f'\left( {tb + \left( {1 - t} \right)a} \right){\rm{d}}t} , $
$ {I_4} = \int_{\frac{1}{2}}^1 {\left( {1 - {t^\alpha }} \right)f'\left( {ta + \left( {1 - t} \right)b} \right){\rm{d}}t} . $

应用引理2,由文献[19]可得到η凸函数的Hermite-Hadamard型分数阶积分不等式.

定理5 [19]   设f:[ab]→R在(ab)可微,|f′|是[ab]上的η凸函数,0 < α≤1,则有

$ \begin{array}{l} \left| {f\left( {\frac{{a + b}}{2}} \right) - {K_1}} \right| \le \frac{{b - a}}{{{2^{\alpha + 1}}\left( {\alpha + 1} \right)}}\left[ {\left| {f'\left( a \right)} \right| + \left| {f'\left( b \right)} \right| + } \right.\\ \left. {\eta \left( {\left| {f'\left( a \right)} \right|,\left| {f'\left( b \right)} \right|} \right) + \eta \left( {\left| {f'\left( b \right)} \right|,\left| {f'\left( a \right)} \right|} \right)} \right]. \end{array} $ (3)

由引理2并利用积分变量代换,有

$ {I_3} = \int_0^{\frac{1}{2}} {\left[ {{{\left( {1 - t} \right)}^\alpha } - 1} \right]f'\left( {ta + \left( {1 - t} \right)b} \right){\rm{d}}t} , $
$ {I_4} = \int_0^{\frac{1}{2}} {\left[ {1 - {{\left( {1 - t} \right)}^\alpha }} \right]f'\left( {\left( {1 - t} \right)a + tb} \right){\rm{d}}t} , $

可得到以下引理:

引理3  设f:[ab]→R在(ab)可微,f′在[ab]上勒贝格可积,α>0,则有

$ \begin{array}{l} f\left( {\frac{{a + b}}{2}} \right) - {K_1} = \frac{{b - a}}{2}\int_0^{\frac{1}{2}} {\left[ {{t^\alpha } - {{\left( {1 - t} \right)}^\alpha } + 1} \right] \times } \\ \;\;\;\;\;\;\;\left[ {f'\left( {\left( {1 - t} \right)a + tb} \right) - f'\left( {ta + \left( {1 - t} \right)b} \right)} \right]{\rm{d}}t. \end{array} $

目前,国内研究η凸函数的文献并不多[20-21].本文建立了新的η凸函数Hermite-Hadamard型分数阶积分不等式.对定理3和定理5的结果进行了一定改进.对由凸函数分数阶的Hermite-Hadamard型不等式的右边部分生成的差值,给出了不同于定理4的估计.为证明主要结论,除引理1和引理3外,还需要引理4和引理5,此两引理用分部积分法易证之.

引理4  设f:[ab]→R在(ab)可微,f′在[ab]上勒贝格可积,α>0,则有

$ \begin{array}{l} {K_2} - f\xi = \frac{{\left( {1 - p} \right)\left( {b - a} \right)}}{{{p^\alpha }}} \times \\ \int_0^p {\left[ {{p^\alpha } - {{\left( {p - t} \right)}^\alpha }} \right]f'\left( {ta + \left( {1 - t} \right)b} \right){\rm{d}}t} + \frac{{p\left( {b - a} \right)}}{{{{\left( {1 - p} \right)}^\alpha }}} \times \\ \int_p^1 {\left[ {{{\left( {t - p} \right)}^\alpha }{{\left( {1 - p} \right)}^\alpha }} \right]f'\left( {ta + \left( {1 - t} \right)b} \right){\rm{d}}t} . \end{array} $

引理5   设f:[ab]→R在(ab)上可微,f′在[ab]上勒贝格可积,α>0,则有

$ \begin{array}{l} pf\left( a \right) + \left( {1 - p} \right)f\left( b \right) - {K_2} = \\ \frac{{\left( {1 - p} \right)\left( {b - a} \right)}}{{{p^\alpha }}}\int_0^p {{{\left( {p - t} \right)}^\alpha }f'\left( {ta + \left( {1 - t} \right)b} \right){\rm{d}}t} - \\ \frac{{p\left( {b - a} \right)}}{{{{\left( {1 - p} \right)}^\alpha }}}\int_p^1 {{{\left( {t - p} \right)}^\alpha }f'\left( {ta + \left( {1 - t} \right)b} \right){\rm{d}}t} . \end{array} $
1 主要结果及证明

定理6  若f:[ab]→Rη凸函数,η$ f\left( {\left[ {a, b} \right]} \right) \times f([a, b])$上有上界Mηα>0,则有

$ \begin{array}{l} f\left( {\frac{{a + b}}{2}} \right) - \frac{{{M_\eta }}}{2} \le f\left( {\frac{{a + b}}{2}} \right) - \\ \frac{\alpha }{{4{{\left( {b - a} \right)}^\alpha }}}\int_a^b {\left[ {{{\left( {x - a} \right)}^{\alpha - 1}} + {{\left( {b - x} \right)}^{\alpha - 1}}} \right] \times } \\ \eta \left( {f\left( {b + a - x} \right),f\left( x \right)} \right){\rm{d}}x \le {K_1} \le \frac{{f\left( a \right) + f\left( b \right)}}{2} + \\ \frac{1}{{2\left( {\alpha + 1} \right)}}\left( {1 - \frac{1}{{{2^\alpha }}}} \right)\left[ {\eta \left( {f\left( a \right),f\left( b \right)} \right) + \eta \left( {f\left( b \right),f\left( a \right)} \right)} \right] \le \\ \frac{{f\left( a \right) + f\left( b \right)}}{2} + \frac{1}{{\alpha + 1}}\left( {1 - \frac{1}{{{2^\alpha }}}} \right){M_\eta } \le \\ \frac{{f\left( a \right) + f\left( b \right)}}{2} + \frac{{{M_\eta }}}{4}. \end{array} $ (4)

证明   对任意x∈[a, b],有$ x = \frac{{b - x}}{{b - a}}a + \frac{{x - a}}{{b - a}}b$,由η凸函数的定义,有

$ f\left( x \right) \le f\left( a \right) + \frac{{x - a}}{{b - a}}\eta \left( {f\left( b \right),f\left( a \right)} \right), $ (5)
$ f\left( x \right) \le f\left( b \right) + \frac{{b - x}}{{b - a}}\eta \left( {f\left( a \right),f\left( b \right)} \right), $ (6)

将式(5)与式(6)乘以${\left( {x - a} \right)^{\alpha - 1}} + {\left( {b - x} \right)^{\alpha - 1}} $,再分别在$ \left[ {a, {\rm{ }}\frac{{a + b}}{2}} \right]$$\left[ {\frac{{a + b}}{2}{\rm{ }}, b} \right] $上对x积分,将所得的2个不等式相加得

$ \begin{array}{l} \int_a^b {{{\left( {x - a} \right)}^{\alpha - 1}}f\left( x \right){\rm{d}}x} + \int_a^b {{{\left( {b - x} \right)}^{\alpha - 1}}f\left( x \right){\rm{d}}x} \le \\ \;\;\;\;\;\;\frac{{{{\left( {b - a} \right)}^\alpha }}}{\alpha }\left[ {f\left( a \right) + f\left( b \right)} \right] + \frac{{{{\left( {b - a} \right)}^\alpha }}}{{\alpha \left( {\alpha + 1} \right)}}\left( {1 - \frac{1}{{{2^\alpha }}}} \right) \times \\ \;\;\;\;\;\;\left[ {\eta \left( {f\left( a \right),f\left( b \right)} \right) + \eta \left( {f\left( b \right),f\left( a \right)} \right)} \right], \end{array} $ (7)

将式(7)乘以$\frac{\alpha }{{2{{\left( {b - a} \right)}^\alpha }}} $,则式(4)的第3个不等式得证.

η凸函数的定义,有

$ \begin{array}{l} f\left( {\frac{{a + b}}{2}} \right) = f\left( {\frac{{x + \left( {a + b - x} \right)}}{2}} \right) \le \\ \;\;\;\;\;\;\;\;\;\;f\left( x \right) + \frac{1}{2}\eta \left( {f\left( {a + b - x} \right),f\left( x \right)} \right), \end{array} $ (8)

将式(8)乘以$ {\left( {x - a} \right)^{\alpha - 1}} + {\left( {b - x} \right)^{\alpha - 1}}$,然后在[a, b]上对x积分,得

$ \begin{array}{l} \frac{{2{{\left( {b - a} \right)}^\alpha }}}{\alpha }f\left( {\frac{{a + b}}{2}} \right) \le \int_a^b {{{\left( {x - a} \right)}^{\alpha - 1}}f\left( x \right){\rm{d}}x} + \\ \;\;\;\;\;\;\;\int_a^b {{{\left( {b - x} \right)}^{\alpha - 1}}f\left( x \right){\rm{d}}x} + \\ \;\;\;\;\;\;\;\frac{1}{2}\int_a^b {\left[ {{{\left( {x - a} \right)}^{\alpha - 1}} + {{\left( {b - x} \right)}^{\alpha - 1}}} \right]} \times \\ \;\;\;\;\;\;\;\eta \left( {f\left( {a + b - x} \right),f\left( x \right)} \right){\rm{d}}x, \end{array} $ (9)

将式(9)乘以$\frac{\alpha }{{2{{\left( {b - a} \right)}^\alpha }}}{\rm{ }} $,则式(4)的第2个不等式得证.

最后,容易证明$ \frac{1}{{\alpha + 1}}\left( {{\rm{ }}1 - \frac{1}{{{2^\alpha }}}} \right)$是[0, 1]上关于α的单调递增函数,故式(4)右边的不等式得证.

注1   因α>0时有$ 1 - \frac{1}{{{2^\alpha }}} < \alpha $,故式(4)是式(2)的改进.

注2  在定理6中,取η(x, y)=x-y,则得到凸函数的Hermite-Hadamard型分数阶不等式[13]

$ f\left( {\frac{{a + b}}{2}} \right) \le {K_1} \le \frac{{f\left( a \right) + f\left( b \right)}}{2}. $

文献[3]利用积分给出了凸函数的Jensen不等式的隔离,受此启发,给出以下定理:

定理7   若f:[ab]→Rη凸函数,α>0,则有

$ \begin{array}{l} f\left( \xi \right) - \frac{{p\left( {1 - p} \right){\rm{\Gamma }}\left( {\alpha + 1} \right)}}{{{{\left( {b - a} \right)}^\alpha }}}\left[ {J_a^{{\alpha _ + }}{f_1}\left( b \right) + J_b^{{\alpha _ - }}{f_2}\left( a \right)} \right] \le \\ \;\;\;\;\;\;{K_2} \le pf\left( a \right) + \left( {1 - p} \right)f\left( b \right) + \frac{{p\left( {1 - p} \right)}}{{\alpha + 1}} \times \\ \;\;\;\;\;\;\left[ {\eta \left( {f\left( a \right),f\left( b \right)} \right) + \eta \left( {f\left( b \right),f\left( a \right)} \right)} \right], \end{array} $ (10)

其中,

$ {f_1}\left( x \right) = \eta \left( {f\left( {b - p\left( {x - a} \right)} \right),f\left( {pa + \left( {1 - p} \right)x} \right)} \right), $
$ {f_2}\left( x \right) = \eta \left( {f\left( {a + \left( {1 - p} \right)\left( {b - x} \right)} \right),f\left( {px + \left( {1 - p} \right)b} \right)} \right). $

证明   将式(5)乘以(ξ-x)α-1,然后在[a, ξ]上对x积分,得

$ \begin{array}{l} \Gamma \left( \alpha \right)J_a^{{\alpha _ + }}f\left( \xi \right) \le \frac{{{{\left( {1 - p} \right)}^\alpha }{{\left( {b - a} \right)}^\alpha }}}{\alpha }f\left( a \right) + \\ \;\;\;\;\;\;\;\;\frac{{{{\left( {1 - p} \right)}^{\alpha + 1}}{{\left( {b - a} \right)}^\alpha }}}{{\alpha \left( {\alpha + 1} \right)}}\eta \left( {f\left( b \right),f\left( a \right)} \right), \end{array} $ (11)

将式(6)乘以(x-ξ)α-1,然后在[ξb]上对x积分,得

$ \begin{array}{*{20}{c}} {\Gamma \left( \alpha \right)J_b^{{\alpha _ - }}f\left( \xi \right) \le \frac{{{p^\alpha }{{\left( {b - a} \right)}^\alpha }}}{\alpha }f\left( b \right) + }\\ {\frac{{{p^{\alpha + 1}}{{\left( {b - a} \right)}^\alpha }}}{{\alpha \left( {\alpha + 1} \right)}}\eta \left( {f\left( a \right),f\left( b \right)} \right),} \end{array} $ (12)

将式(11)和(12)分别乘以$ \frac{{p\alpha }}{{{{\left( {1 - p} \right)}^\alpha }{{\left( {b - a} \right)}^\alpha }}}$$\frac{{\left( {1 - p} \right)\alpha }}{{{p^\alpha }{{\left( {b - a} \right)}^\alpha }}} $,再将所得不等式相加,则式(10)右边的不等式得证.

对任意x∈[a, ξ],若取$ y = \frac{{\xi - px{\rm{ }}}}{{1 - p}}$,则有y∈[ξ, b],且$ \xi = px + \left( {1 - p} \right)y$,由定义有

$ f\left( \xi \right) \le f\left( x \right) + \left( {1 - p} \right)\eta \left( {f\left( y \right),f\left( x \right)} \right), $ (13)

将式(13)乘以(ξ-x)α-1,然后在[a, ξ]上对x积分,得

$ \begin{array}{l} \frac{{{{\left( {1 - p} \right)}^\alpha }{{\left( {b - a} \right)}^\alpha }}}{\alpha }f\left( \xi \right) \le \\ \;\;\;\;\;\;{\rm{\Gamma }}\left( \alpha \right)J_a^{{\alpha _ + }}f\left( \xi \right) + {\left( {1 - p} \right)^{\alpha + 1}}{\rm{\Gamma }}\left( \alpha \right)J_a^{{\alpha _ + }}{f_1}\left( b \right), \end{array} $ (14)

对任意x∈[ξ, b],若取$ y\prime = \frac{{\xi - \left( {1 - p} \right)x}}{p}$,则有y′∈[a, ξ],且$ \xi = \left( {1 - p} \right)x + py\prime $,由定义有

$ f\left( \xi \right) \le f\left( x \right) + p\eta \left( {f'\left( y \right),f\left( x \right)} \right), $ (15)

将式(15)乘以(x-ξ)α-1,然后在[ξ, b]上对x积分,得

$ \begin{array}{l} \frac{{{p^\alpha }{{\left( {b - a} \right)}^\alpha }}}{\alpha }f\left( \xi \right) \le \\ \;\;\;\;\;\;\;{\rm{\Gamma }}\left( \alpha \right)J_b^{{\alpha _ - }}f\left( \xi \right) + {p^{\alpha + 1}}{\rm{\Gamma }}\left( \alpha \right)J_b^{{\alpha _ - }}{f_2}\left( a \right), \end{array} $ (16)

将式(14)和(16)分别乘以$ \frac{{p\alpha }}{{{{\left( {1 - p} \right)}^\alpha }{{\left( {b - a} \right)}^\alpha }}}$$ \frac{{\left( {1 - p} \right)\alpha }}{{{p^\alpha }{{\left( {b - a} \right)}^\alpha }}}$,然后将所得不等式相加,则式(10)左边的不等式得证.

推论1  若f:[ab]→Rη凸函数,η$ f\left( {\left[ {a, b} \right]} \right) \times f([a, b])$上有上界Mηα>0,则有

$ \begin{array}{l} f\left( \xi \right) - 2p\left( {1 - p} \right){M_\eta } \le {K_2} \le \\ \;\;\;\;\;\;\;\;\;\;pf\left( a \right) + \left( {1 - p} \right)f\left( b \right) + \frac{{2p\left( {1 - p} \right)}}{{\alpha + 1}}{M_\eta }. \end{array} $

定理8   设f:[ab]→R在(ab)上可微,f′在[ab]上勒贝格可积,|f′|是[ab]上的η凸函数,α>0,则有

$ \begin{array}{l} \left| {\frac{{f\left( a \right) + f\left( b \right)}}{2} - {K_1}} \right| \le \frac{{b - a}}{{2\left( {\alpha + 1} \right)}} \times \\ \left\{ {\left( {1 - \frac{1}{{{2^\alpha }}}} \right)\left[ {\left| {f'\left( a \right)} \right| + \left| {f'\left( b \right)} \right|} \right] + \frac{1}{{\alpha + 2}}\left( {1 - \frac{{\alpha + 2}}{{{2^{\alpha + 1}}}}} \right) \times } \right.\\ \left. {\left[ {\eta \left( {\left| {f'\left( a \right)} \right|,\left| {f'\left( b \right)} \right|} \right) + \eta \left( {\left| {f'\left( b \right)} \right|,\left| {f'\left( a \right)} \right|} \right)} \right]} \right\}. \end{array} $ (17)

证明  由引理1得

$ \begin{array}{l} \left| {\frac{{f\left( a \right) + f\left( b \right)}}{2} - {K_1}} \right| \le \\ \;\;\;\;\frac{{b - a}}{2}\int_0^1 {\left| {{{\left( {1 - t} \right)}^\alpha } - {t^\alpha }} \right|\left| {f'\left( {ta + \left( {1 - t} \right)b} \right)} \right|{\rm{d}}t} . \end{array} $ (18)

由|f′|的η凸性, 得

$ \begin{array}{l} \left| {f'\left( {ta + \left( {1 - t} \right)b} \right)} \right| \le \\ \;\;\;\;\;\left| {f'\left( a \right)} \right| + \left( {1 - t} \right)\eta \left( {\left| {f'\left( b \right)} \right|,\left| {f'\left( a \right)} \right|} \right), \end{array} $ (19)
$ \begin{array}{l} \left| {f'\left( {ta + \left( {1 - t} \right)b} \right)} \right| \le \\ \;\;\;\;\;\left| {f'\left( b \right)} \right| + t\eta \left( {\left| {f'\left( a \right)} \right|,\left| {f'\left( b \right)} \right|} \right), \end{array} $ (20)

将式(19)和(20)乘以|(1-t)α-tα|,然后分别在$ \left[ {0, \frac{1}{2}} \right]$$\left[ {\frac{1}{2}, 1} \right] $上对t积分,将所得的2个不等式相加得

$ \begin{array}{l} \int_0^1 {\left| {{{\left( {1 - t} \right)}^\alpha } - {t^\alpha }} \right|\left| {f'\left( {ta + \left( {1 - t} \right)b} \right)} \right|{\rm{d}}t} \le \\ \left| {f'\left( a \right)} \right|\int_0^{\frac{1}{2}} {\left| {{{\left( {1 - t} \right)}^\alpha } - {t^\alpha }} \right|{\rm{d}}t} + \\ \left| {f'\left( b \right)} \right|\int_{\frac{1}{2}}^1 {\left| {{{\left( {1 - t} \right)}^\alpha } - {t^\alpha }} \right|{\rm{d}}t} + \\ \eta \left( {\left| {f'\left( b \right)} \right|,\left| {f'\left( a \right)} \right|} \right)\int_0^{\frac{1}{2}} {\left( {1 - t} \right)\left| {{{\left( {1 - t} \right)}^\alpha } - {t^\alpha }} \right|{\rm{d}}t} + \\ \eta \left( {\left| {f'\left( a \right)} \right|,\left| {f'\left( b \right)} \right|} \right)\int_{\frac{1}{2}}^1 {t\left| {{{\left( {1 - t} \right)}^\alpha } - {t^\alpha }} \right|{\rm{d}}t} = \\ \frac{1}{{\alpha + 1}}\left\{ {\left( {1 - \frac{1}{{{2^\alpha }}}} \right)\left[ {\left| {f'\left( a \right)} \right| + \left| {f'\left( b \right)} \right|} \right] + } \right.\\ \frac{1}{{\alpha + 2}}\left( {1 - \frac{{\alpha + 2}}{{{2^{\alpha + 1}}}}} \right)\left[ {\eta \left( {\left| {f'\left( a \right)} \right|,\left| {f'\left( b \right)} \right|} \right) + } \right.\\ \left. {\left. {\eta \left( {\left| {f'\left( b \right)} \right|,\left| {f'\left( a \right)} \right|} \right)} \right]} \right\}, \end{array} $ (21)

综合式(18)和(21),则式(17)获证.

注3  在定理8中,若η(x, y)=x-y,即|f′|是[ab]上的凸函数,则可得文献[13]的凸函数的Hermite-Hadamard型分数阶积分不等式.

定理9  设f:[ab]→R在(ab)上可微,f′在[ab]上勒贝格可积,|f′|是[ab]上的η凸函数,0 < α≤1,则有

$ \begin{array}{l} \left| {\frac{{f\left( a \right) + f\left( b \right)}}{2} - {K_1}} \right| \le \frac{{b - a}}{2}\left[ {\frac{1}{2} - \frac{1}{{\alpha + 1}}\left( {1 - \frac{1}{{{2^\alpha }}}} \right)} \right] \times \\ \left[ {\left| {f'\left( a \right)} \right| + \left| {f'\left( b \right)} \right| + \frac{1}{2}\left( {\eta \left( {\left| {f'\left( a \right)} \right|,} \right.} \right.} \right.\\ \left. {\left. {\left. {\left| {f'\left( b \right)} \right|} \right) + \eta \left( {\left| {f'\left( b \right)} \right|,\left| {f'\left( a \right)} \right|} \right)} \right)} \right]. \end{array} $ (22)

证明   由引理3得

$ \begin{array}{l} \left| {f\left( {\frac{{a + b}}{2}} \right) - {K_1}} \right| \le \frac{{b - a}}{2}\int_0^{\frac{1}{2}} {\left[ {{t^\alpha } - {{\left( {1 - t} \right)}^\alpha } + 1} \right] \times } \\ \;\;\;\;\;\left[ {\left| {f'\left( {\left( {1 - t} \right)a + tb} \right)} \right| + \left| {f'\left( {ta + \left( {1 - t} \right)b} \right)} \right|} \right]{\rm{d}}t. \end{array} $ (23)

由|f′|的η凸性得

$ \begin{array}{l} \left| {f'\left( {\left( {1 - t} \right)a + tb} \right)} \right| \le \\ \;\;\;\;\;\;\left| {f'\left( a \right)} \right| + t\eta \left( {\left| {f'\left( b \right)} \right|,\left| {f'\left( a \right)} \right|} \right), \end{array} $
$ \begin{array}{l} \left| {f'\left( {\left( {1 - t} \right)a + tb} \right)} \right| \le \\ \;\;\;\;\;\;\left| {f'\left( b \right)} \right| + \left( {1 - t} \right)\eta \left( {\left| {f'\left( a \right)} \right|,\left| {f'\left( b \right)} \right|} \right), \end{array} $
$ \begin{array}{l} \left| {f'\left( {ta + \left( {1 - t} \right)b} \right)} \right| \le \\ \;\;\;\;\;\;\left| {f'\left( a \right)} \right| + \left( {1 - t} \right)\eta \left( {\left| {f'\left( b \right)} \right|,\left| {f'\left( a \right)} \right|} \right), \end{array} $
$ \left| {f'\left( {ta + \left( {1 - t} \right)b} \right)} \right| \le \left| {f'\left( b \right)} \right| + t\eta \left( {\left| {f'\left( a \right)} \right|,\left| {f'\left( b \right)} \right|} \right), $

将上面4个式子相加并除以2得

$ \begin{array}{l} \left| {f'\left( {\left( {1 - t} \right)a + tb} \right)} \right| + \left| {f'\left( {ta + \left( {1 - t} \right)b} \right)} \right| \le \\ \left| {f'\left( a \right)} \right| + \left| {f'\left( b \right)} \right| + \frac{1}{2}\left( {\eta \left( {\left| {f'\left( a \right)} \right|,\left| {f'\left( b \right)} \right|} \right) + } \right.\\ \left. {\eta \left( {\left| {f'\left( b \right)} \right|,\left| {f'\left( a \right)} \right|} \right)} \right). \end{array} $ (24)

综合式(23)和(24),则式(22)得证.

注4   因为当0 < α≤1时,$ \frac{1}{2} - \frac{1}{{\alpha + 1}}\left( {1 - \frac{1}{{{2^\alpha }}}} \right){\rm{ }} \le \frac{1}{{{2^\alpha }\left( {\alpha + 1} \right)}}$,所以式(22)是式(3)的改进.

定理10   设f:[ab]→R在(ab)上可微,f′在[ab]上勒贝格可积,|f′|是[ab]上的η凸函数,α>0,则有

$ \begin{array}{l} \left| {{K_2} - f\left( \xi \right)} \right| \le \frac{{\alpha p\left( {1 - p} \right)\left( {b - a} \right)}}{{\alpha + 1}}\left\{ {\left| {f'\left( a \right)} \right| + \left| {f'\left( b \right)} \right| + } \right.\\ \;\;\;\;\;\frac{{\alpha + 3}}{{2\left( {\alpha + 2} \right)}}\left[ {p\eta \left( {\left| {f'\left( a \right)} \right|,\left| {f'\left( b \right)} \right|} \right) + } \right.\\ \;\;\;\;\;\left. {\left. {\left( {1 - p} \right)\eta \left( {\left| {f'\left( b \right)} \right|,\left| {f'\left( a \right)} \right|} \right)} \right]} \right\}. \end{array} $ (25)

证明   由引理4得

$ \begin{array}{l} \left| {{K_2} - f\left( \xi \right)} \right| \le \frac{{\left( {1 - p} \right)\left( {b - a} \right)}}{{{p^\alpha }}} \times \\ \int_0^p {\left[ {{p^\alpha } - {{\left( {p - t} \right)}^\alpha }} \right]\left| {f'\left( {ta + \left( {1 - t} \right)b} \right)} \right|{\rm{d}}t} + \\ \frac{{p\left( {b - a} \right)}}{{{{\left( {1 - p} \right)}^\alpha }}}\int_0^p {\left[ {\left( {1 - {p^\alpha }} \right) - {{\left( {t - p} \right)}^\alpha }} \right]\left| {f'\left( {ta + \left( {1 - t} \right)b} \right)} \right|{\rm{d}}t} . \end{array} $ (26)

由|f′|的η凸性得

$ \begin{array}{l} \int_0^p {\left[ {{p^\alpha } - {{\left( {p - t} \right)}^\alpha }} \right]\left| {f'\left( {ta + \left( {1 - t} \right)b} \right)} \right|{\rm{d}}t} \le \\ \int_0^p {\left[ {{p^\alpha } - {{\left( {p - t} \right)}^\alpha }} \right]\left[ {\left| {f'\left( b \right)} \right| + t\eta \left( {\left| {f'\left( a \right)} \right|,\left| {f'\left( b \right)} \right|} \right)} \right]{\rm{d}}t} = \\ \frac{\alpha }{{\alpha + 1}}{p^{\alpha + 1}}\left| {f'\left( b \right)} \right| + \\ \frac{{{p^{\alpha + 2}}\alpha \left( {\alpha + 3} \right)}}{{2\left( {\alpha + 1} \right)\left( {\alpha + 2} \right)}}\eta \left( {\left| {f'\left( a \right)} \right|,\left| {f'\left( b \right)} \right|} \right), \end{array} $ (27)
$ \begin{array}{l} \int_p^1 {\left[ {\left( {1 - {p^\alpha }} \right) - {{\left( {t - p} \right)}^\alpha }} \right]\left| {f'\left( {ta + \left( {1 - t} \right)b} \right)} \right|{\rm{d}}t} \le \\ \int_p^1 {\left[ {\left( {1 - {p^\alpha }} \right) - {{\left( {t - p} \right)}^\alpha }} \right]\left[ {\left| {f'\left( a \right)} \right| + \left( {1 - t} \right) \times } \right.} \\ \left. {\eta \left( {\left| {f'\left( b \right)} \right|,\left| {f'\left( a \right)} \right|} \right)} \right]{\rm{d}}t = \\ \frac{\alpha }{{\alpha + 1}}{\left( {1 - p} \right)^{a + 1}}\left| {f'\left( a \right)} \right| + \\ \frac{{{{\left( {1 - p} \right)}^{a + 2}}\alpha \left( {\alpha + 3} \right)}}{{2\left( {\alpha + 1} \right)\left( {\alpha + 2} \right)}}\eta \left( {\left| {f'\left( b \right)} \right|,\left| {f'\left( a \right)} \right|} \right). \end{array} $ (28)

综合式(26)~式(28),则式(25)得证.

注5   在定理10中,若η(x, y)=x-y,也即|f′|是[ab]上的凸函数,则有

$ \begin{array}{l} \left| {{K_2} - f\left( \xi \right)} \right| \le \frac{{\alpha p\left( {1 - p} \right)\left( {b - a} \right)}}{{2\left( {\alpha + 1} \right)\left( {\alpha + 2} \right)}} \times \\ \;\;\;\;\left\{ {\left[ {\alpha + 1 + 2\left( {\alpha + 3} \right)p} \right]\left| {f'\left( a \right)} \right| + } \right.\\ \;\;\;\;\left. {\left[ {3\alpha + 7 - 2\left( {\alpha + 3} \right)p} \right]\left| {f'\left( b \right)} \right|} \right\}. \end{array} $

定理11  设f:[ab]→R在(ab)上可微,f′在[ab]上勒贝格可积,|f′|是[ab]上的η凸函数,α>0,则有

$ \begin{array}{l} \left| {pf\left( a \right) + \left( {1 - p} \right)f\left( b \right) - {K_2}} \right| \le \frac{{p\left( {1 - p} \right)\left( {b - a} \right)}}{{\alpha + 1}} \times \\ \left\{ {\left| {f'\left( a \right)} \right| + \left| {f'\left( b \right)} \right| + \frac{1}{{\alpha + 2}}\left[ {p\eta \left( {\left| {f'\left( a \right)} \right|,} \right.} \right.} \right.\\ \left. {\left. {\left. {\left| {f'\left( b \right)} \right|} \right) + \left( {1 - p} \right)\eta \left( {\left| {f'\left( b \right)} \right|,\left| {f'\left( a \right)} \right|} \right)} \right]} \right\}. \end{array} $

证明  利用类似于引理5及定理9的证明方法可证得定理11,此证略.

推论2  若f:[ab]→Rη凸函数,f′在[ab]上勒贝格可积,|f′|是[ab]上的η凸函数,α>0,则有

$ \begin{array}{l} \left| {\frac{{f\left( a \right) + f\left( b \right)}}{2} - \frac{\alpha }{2}\left[ {\int_a^b {{{\left( {b - x} \right)}^{\alpha - 1}}f\left( {\frac{{a + x}}{2}} \right){\rm{d}}x} + } \right.} \right.\\ \left. {\left. {\int_a^b {{{\left( {x - a} \right)}^{\alpha - 1}}f\left( {\frac{{x + b}}{2}} \right){\rm{d}}x} } \right]} \right| \le \\ \frac{{b - a}}{{4\left( {\alpha + 1} \right)}}\left[ {\left| {f'\left( a \right)} \right| + \left| {f'\left( b \right)} \right|} \right] + \frac{{b - a}}{{8\left( {\alpha + 1} \right)\left( {\alpha + 2} \right)}} \times \\ \left[ {\eta \left( {\left| {f'\left( a \right)} \right|,\left| {f'\left( b \right)} \right|} \right) + \eta \left( {\left| {f'\left( b \right)} \right|,\left| {f'\left( a \right)} \right|} \right)} \right], \end{array} $

证明   在定理11中, 取$p = \frac{1}{2} $即可得证.

注6   在定理11中,若η(x, y)=x-y,也即|f′|是[ab]上的凸函数,则有

$ \begin{array}{l} \left| {pf\left( a \right) + \left( {1 - p} \right)f\left( b \right) - {K_2}} \right| \le \\ \;\;\;\;\;p\left( {1 - p} \right)\left( {b - a} \right)\frac{{\left| {f'\left( a \right)} \right| + \left| {f'\left( b \right)} \right|}}{{\alpha + 1}}. \end{array} $
2 结束语

建立了η凸函数的一些积分不等式,推广了通常凸函数的相应结果.寻找积分隔离η凸函数的Jensen型不等式,以及利用导函数的η凸性进行误差估计,均仿照了通常凸函数的研究方法.能对已有结果做些改进,得益于证明技巧的提升,包括分别在不同区间上对2个不等式积分,以及利用变量代换改变积分区间.有关凸函数的其他结果在η凸函数上的移植尚待进一步研究.

参考文献
[1] 匡继昌. 常用不等式[M]. 第4版. 济南: 山东科学技术出版社, 2010: 430-436.
KUANG J C. Applied Inequalities[M]. 4th ed. Jinan: Shandong Science and Technology Press, 2010: 430-436.
[2] DRAGOMIR S S, PEARCE C E M. Selected Topics on Hermite-Hadamard Inequalities and Applications[D]. Victoria: Victoria University, 2000.
[3] 王良成. 凸函数的Hadamard不等式的若干推广[J]. 数学的实践与认识, 2002, 32(6): 1027–1030.
WANG L C. On some extentions of Hadamard inequalities for convex functions[J]. Mathematics in Practice and Theory, 2002, 32(6): 1027–1030. DOI:10.3969/j.issn.1000-0984.2002.06.028
[4] 柯源, 杨斌, 胡明旸. Hermite-Hadamard不等式的推广[J]. 数学的实践与认识, 2007, 37(23): 161–164.
KE Y, YANG B, HU M Y. A refinement of Hermite-Hadamard's inequality[J]. Mathematics in Practice and Theory, 2007, 37(23): 161–164. DOI:10.3969/j.issn.1000-0984.2007.23.029
[5] 时统业, 尹亚兰, 邓捷坤. Hermite-Hadamard不等式的一个推广与加细[J]. 贵州师范大学学报(自然科学版), 2012, 30(1): 58–63, 69.
SHI T Y, YIN Y L, DENG J K. Generalization and refinement of Hermite-Hadamard's inequality[J]. Journal of Guizhou Normal University(Natural Sciences), 2012, 30(1): 58–63, 69. DOI:10.3969/j.issn.1004-5570.2012.01.013
[6] 黄金莹, 赵宇. 广义凸函数的Hadamard不等式[J]. 重庆师范大学学报(自然科学版), 2013, 30(4): 1–5.
HUANG J Y, ZHAO Y. Hadamard inequalities of generalized convex functions[J]. Journal of Chongqing Normal University(Natural Science), 2013, 30(4): 1–5.
[7] 王国栋. h-F凸函数的一类Hadamard不等式[J]. 重庆师范大学学报(自然科学版), 2014, 31(6): 1–4.
WANG G D. On Hadamard-type inequalities for h-F convex functions[J]. Journal of Chongqing Normal University(Natural Science), 2014, 31(6): 1–4.
[8] 时统业, 李军. 基于凸函数积分性质的Hermite-Hadamard不等式的加细[J]. 广东第二师范学院学报, 2017, 37(5): 23–27.
SHI T Y, LI J. Refinement of Hermite-Hadamard inequality based on integral properties of convex functions[J]. Journal of Guangdong University of Education, 2017, 37(5): 23–27. DOI:10.3969/j.issn.2095-3798.2017.05.003
[9] 曾志红, 时统业, 钟建华, 等. 对称凸函数和弱对称凸函数的Hermite-Hadamard型不等式[J]. 西南师范大学学报(自然科学版), 2018, 43(4): 24–30.
ZENG Z H, SHI T Y, ZHONG J H, et al. Hermite-Hadamardtype inequalities for symmetrized convex functions and weak symmetrized convex functions[J]. Journal of Southwest China Normal University(Natural Science), 2018, 43(4): 24–30.
[10] GORDJI M E, DELAVAR M R, DE LA SEN M. On φ-convex functions[J]. Journal of Mathematical Inequalities, 2016, 10(1): 173–183.
[11] DELAVAR M R, DRAGOMIR S S. On η-convexity[J]. Mathematical Inequalities & Applications, 2017, 20(1): 203–216.
[12] DAHMANI Z. On Minkowski and Hermit-Hadamardintegral inequalities via fractional integration[J]. Annals of Functional Analysis, 2010, 1(1): 51–58. DOI:10.15352/afa/1399900993
[13] SARIKAYA M Z, SET E, YALDIZ H, et al. Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities[J]. Mathematical and Computer Modelling, 2013, 57(9/10): 2403–2407.
[14] IQBAL M, BHATTI M I, NAZEER K. Generalization of inequalities analogous to Hermite-Hadamard inequality via fractional integrals[J]. Bulletin of the Korean Mathematical Society, 2015, 52(3): 707–716.
[15] 王柳伟, 叶明武, 袁权龙. 预不变凸函数与一类Hermite-Hadamard型分数阶积分不等式[J]. 贵州大学学报(自然科学版), 2017, 34(5): 33–37, 48.
WANG L W, YE M W, YUAN Q L. Preinvex convex functions and a class of Hermite-Hadamard type fractional order integral inequalities[J]. Journal of Guizhou University(Natural Science), 2017, 34(5): 33–37, 48.
[16] 时统业, 夏琦, 王斌. 具有有界二阶导数的函数的分数阶不等式[J]. 广东第二师范学院学报, 2016, 36(5): 43–48.
SHI T Y, XIA Q, WANG B. Fractional integral inequalities for functions with second derivatives bounded[J]. Journal of Guangdong University of Education, 2016, 36(5): 43–48. DOI:10.3969/j.issn.2095-3798.2016.05.005
[17] 孙文兵. 分数次积分下关于s-凸函数的新Hermite-Hadamard型不等式[J]. 浙江大学学报(理学版), 2017, 44(5): 531–537.
SUN W B. New Hermite-Hadamard-type inequalities for s-convex functions via fractional integrals[J]. Journal of Zhejiang University(Science Edition), 2017, 44(5): 531–537.
[18] 孙文兵. 映射导数为s-凸函数且在分数次积分下的Hadamard型不等式[J]. 吉林大学学报(理学版), 2017, 55(4): 809–814.
SUN W B. Hadamard-type inequalities with mapping derivatives being s-convex functions and under fractional integrals[J]. Journal of Jilin University(Science Edition), 2017, 55(4): 809–814.
[19] ALI T, KHAN M A, KHURSHIDI Y. Hermite-Hadamard inequality for fractional integrals via η-convex functions[J]. Acta Mathematica Universitatis Comenianae, 2017, 86(1): 153–164.
[20] 时统业. 对数η-凸函数的积分不等式[J]. 湖南理工学院学报(自然科学版), 2017, 30(3): 1–5.
SHI T Y. Integral inequalities for log-η-convex functions[J]. Journal of Hunan Institute of Science and Technology(Natural Science), 2017, 30(3): 1–5. DOI:10.3969/j.issn.1672-5298.2017.03.002
[21] 时统业, 李军. η-凸函数的不等式[J]. 贵州师范大学学报(自然科学版), 2017, 35(4): 84–88.
SHI T Y, LI J. Inequalities for η-convex functions[J]. Journal of Guizhou Normal University(Natural Science), 2017, 35(4): 84–88. DOI:10.3969/j.issn.1004-5570.2017.04.011