Hermite-Hadamard type inequalities involving Riemann-Liouville fractional integrals for η-convex functions
SHI Tongye1, ZENG Zhihong2, CAO Junfei3
1. PLA Naval Command College, Nanjing 211800, China;
2. Editorial Department of Journal, Guangdong University of Education, Guangzhou 510303, China;
3. Department of Mathematics, Guangdong University of Education, Guangzhou 510303, China
Abstract:Two existing Hermite-Hadamard type inequalities involving fractional integrals for η-convex functions are improved. By using the fractional integral identities embedding the first order derivative function, new Hermite-Hadamard type inequalities involving fractional integrals are obtained provided that the absolute value of the first derivative function is η-convex function.
[1] 匡继昌. 常用不等式[M].第4版. 济南:山东科学技术出版社,2010:430-436. KUANG J C.Applied Inequalities[M]. 4th ed. Jinan:Shandong Science and Technology Press, 2010:430-436.
[2] DRAGOMIR S S,PEARCE C E M.Selected Topics on Hermite-Hadamard Inequalities and Applications[D].Victoria:Victoria University,2000.
[3] 王良成. 凸函数的Hadamard不等式的若干推广[J]. 数学的实践与认识, 2002,32(6):1027-1030. WANG L C. On some extentions of Hadamard inequalities for convex functions[J]. Mathematics in Practice and Theory, 2002, 32(6):1027-1030.
[4] 柯源,杨斌,胡明旸. Hermite-Hadamard不等式的推广[J]. 数学的实践与认识, 2007,37(23):161-164. KE Y, YANG B, HU M Y. A refinement of Hermite-Hadamard's inequality[J]. Mathematics in Practice and Theory, 2007,37(23):161-164.
[5] 时统业,尹亚兰,邓捷坤. Hermite-Hadamard不等式的一个推广与加细[J]. 贵州师范大学学报(自然科学版), 2012,30(1):58-63,69. SHI T Y,YIN Y L,DENG J K. Generalization and refinement of Hermite-Hadamard's inequality[J]. Journal of Guizhou Normal University(Natural Sciences), 2012,30(1):58-63,69.
[6] 黄金莹,赵宇. 广义凸函数的Hadamard不等式[J]. 重庆师范大学学报(自然科学版), 2013,30(4):1-5. HUANG J Y,ZHAO Y. Hadamard inequalities of generalized convex functions[J]. Journal of Chongqing Normal University(Natural Science), 2013,30(4):1-5.
[7] 王国栋. h-F凸函数的一类Hadamard不等式[J]. 重庆师范大学学报(自然科学版),2014,31(6):1-4. WANG G D. On Hadamard-type inequalities for h-F convex functions[J]. Journal of Chongqing Normal University(Natural Science), 2014,31(6):1-4.
[8] 时统业,李军. 基于凸函数积分性质的Hermite-Hadamard不等式的加细[J]. 广东第二师范学院学报,2017,37(5):23-27. SHI T Y, LI J. Refinement of Hermite-Hadamard inequality based on integral properties of convex functions[J]. Journal of Guangdong University of Education,2017,37(5):23-27.
[9] 曾志红,时统业,钟建华,等. 对称凸函数和弱对称凸函数的Hermite-Hadamard型不等式[J].西南师范大学学报(自然科学版), 2018,43(4):24-30. ZENG Z H, SHI T Y, ZHONG J H, et al. Hermite-Hadamardtype inequalities for symmetrized convex functions and weak symmetrized convex functions[J]. Journal of Southwest China Normal University(Natural Science), 2018,43(4):24-30.
[10] GORDJI M E,DELAVAR M R,DE LA SEN M. On φ-convex functions[J].Journal of Mathematical Inequalities,2016,10(1):173-183.
[11] DELAVAR M R,DRAGOMIR S S.On η-convexity[J].Mathematical Inequalities & Applications, 2017,20(1):203-216.
[12] DAHMANI Z. On Minkowski and Hermit-Hadamardintegral inequalities via fractional integration[J]. Annals of Functional Analysis, 2010, 1(1):51-58.
[13] SARIKAYA M Z, SET E, YALDIZ H, et al. Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities[J]. Mathematical and Computer Modelling, 2013, 57(9/10):2403-2407.
[14] IQBAL M, BHATTI M I, NAZEER K. Generalization of inequalities analogous to Hermite-Hadamard inequality via fractional integrals[J]. Bulletin of the Korean Mathematical Society, 2015, 52(3):707-716.
[15] 王柳伟,叶明武,袁权龙. 预不变凸函数与一类Hermite-Hadamard型分数阶积分不等式[J]. 贵州大学学报(自然科学版), 2017,34(5):33-37, 48. WANG L W, YE M W, YUAN Q L. Preinvex convex functions and a class of Hermite-Hadamard type fractional order integral inequalities[J]. Journal of Guizhou University(Natural Science), 2017,34(5):33-37,48.
[16] 时统业,夏琦,王斌. 具有有界二阶导数的函数的分数阶不等式[J]. 广东第二师范学院学报, 2016,36(5):43-48. SHI T Y, XIA Q, WANG B. Fractional integral inequalities for functions with second derivatives bounded[J].Journal of Guangdong University of Education, 2016,36(5):43-48.
[17] 孙文兵. 分数次积分下关于s-凸函数的新Hermite-Hadamard型不等式[J]. 浙江大学学报(理学版),2017,44(5):531-537. SUN W B. New Hermite-Hadamard-type inequalities for s-convex functions via fractional integrals[J]. Journal of Zhejiang University(Science Edition), 2017,44(5):531-537.
[18] 孙文兵. 映射导数为s-凸函数且在分数次积分下的Hadamard型不等式[J]. 吉林大学学报(理学版),2017,55(4):809-814. SUN W B. Hadamard-type inequalities with mapping derivatives being s-convex functions and under fractional integrals[J]. Journal of Jilin University(Science Edition), 2017,55(4):809-814.
[19] ALI T, KHAN M A, KHURSHIDI Y. Hermite-Hadamard inequality for fractional integrals via η-convex functions[J]. Acta Mathematica Universitatis Comenianae, 2017, 86(1):153-164.
[20] 时统业. 对数η-凸函数的积分不等式[J]. 湖南理工学院学报(自然科学版), 2017,30(3):1-5. SHI T Y. Integral inequalities for log-η-convex functions[J]. Journal of Hunan Institute of Science and Technology(Natural Science), 2017,30(3):1-5.
[21] 时统业,李军. η-凸函数的不等式[J]. 贵州师范大学学报(自然科学版), 2017,35(4):84-88. SHI T Y, LI J. Inequalities for η-convex functions[J]. Journal of Guizhou Normal University(Natural Science), 2017,35(4):84-88.