Please wait a minute...
Journal of Zhejiang University (Science Edition)  2024, Vol. 51 Issue (1): 55-63    DOI: 10.3785/j.issn.1008-9497.2024.01.007
Chemistry     
One pot chemo/enzymatic synthesis of chiral δ-substituent caprolactam and its configuration controlling
Meiling TU,Qining WANG,Yanjun LI,Jianting ZHANG,Jining JIA,Asan YANG
College of Chemical Engineering,Zhejiang University of Technology,Hangzhou 310014,China
Download: HTML( 0 )   PDF(1603KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Herein, a novel one pot synthesis of chiral δ-substituent caprolactam strategy which applies 1-substituent homoallylic amine as the starting material is reported. This method combines the enzymatic dynamic kinetic resolution (DKR) and ring cross metathesis. Moreover, the configuration of caprolactam can be controlled by using lipase and protease as the DKR catalyst. The enantiomeric excess value of obtained R- and S-caprolactam can reach up to 90% and 82%, the yield can also be above 82% and 70%.



Key wordschiral caprolactam      configuration-controlling synthesis      one pot chemo/enzymatic synthesis     
Received: 19 August 2022      Published: 10 January 2024
CLC:  TQ 46  
Cite this article:

Meiling TU,Qining WANG,Yanjun LI,Jianting ZHANG,Jining JIA,Asan YANG. One pot chemo/enzymatic synthesis of chiral δ-substituent caprolactam and its configuration controlling. Journal of Zhejiang University (Science Edition), 2024, 51(1): 55-63.

URL:

https://www.zjujournals.com/sci/EN/Y2024/V51/I1/55


手性δ-取代己内酰胺化学/酶串联一锅法合成及立体构型调控

报道了一种以1-取代高烯丙基胺为原料,结合酶催化动态动力学拆分与分子内烯烃复分解反应串联一锅法制备手性δ-取代己内酰胺的方法。分别用脂肪酶和蛋白酶作为动态动力学拆分催化剂,实现了手性δ-取代己内酰胺立体构型的调控。通过该方法制备的R-δ-取代己内酰胺的对映体过量值(enantiomeric excess,ee)均在90%以上,产率维持在76%以上;所制备的S-δ-取代己内酰胺的ee也在82%以上,产率均高于70%。


关键词: 手性己内酰胺,  立体构型可调控合成,  化学/酶串联一锅法合成 
Fig.1 Chemo-enzymatic synthesis of chiral δ-substituent caprolactam
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
序号催化剂ee/% b产率/%c构型
1CAL BPd/C9253R-
2PS-IMPd/C9075R-
3PS-IMPd/BaSO49386R-
4PS-IM雷尼镍9054R-
5PS-IM雷尼钴9625R-
6碱性蛋白酶Pd/BaSO48780S-
Table 1 The results of enzymatic DKR of 1-phenylbut-3-en-1-amine
序号胺/酰化试剂ee/% b产率/%c(构型)
1PS-IM1.0/5.0--
2PS-IM1.0/5.09423(R-)
3PS-IM1.0/1.19270(R-)
4PS-IM1.1/1.09378(R-)
5dPS-IM1.1/1.09270(R-)
6碱性蛋白酶1.1/1.08572(S-)
Table 2 Chemo-enzymatic synthesis of δ-caprolactam
序号Ree/% b产率/%c(构型)
1-1-苯基PS-IM9378(R-)
2-1-(4-溴苯基)PS-IM9582(R-)
3-1-(4-氯苯基)PS-IM9483(R-)
4-1-(4-氟苯基)PS-IM9076(R-)
5-1-庚基PS-IM9082(R-)
6-1-苯基碱性蛋白酶8572(S-)
7-1-(4-溴苯基)碱性蛋白酶8878(S-)
8-1-(4-氯苯基)碱性蛋白酶8573(S-)
9-1-(4-氟苯基)碱性蛋白酶8270(S-)
10-1-庚基碱性蛋白酶8475(S-)
Table 3 Chemo/enzymatic synthesis of chiral δ-substituent caprolactam
[1]   VITAKU E, SMITH D T, NJARDARSON J T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among US FDA approved pharmaceuticals[J]. Journal of Medicinal Chemistry, 2014, 57(24): 10257-10274. DOI:10.1021/jm501100b
doi: 10.1021/jm501100b
[2]   CARUANO J, MUCCIOLI G G, ROBIETTE R. Biologically active γ-lactams: Synthesis and natural sources[J]. Organic & Biomolecular Chemistry, 2016, 14: 10134-10156. DOI:10.1039/c6ob01349j
doi: 10.1039/c6ob01349j
[3]   FENTEANY G, STANDAERT R F, LANE W S, et al. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin[J]. Science, 1995, 268(5211): 726-731. DOI:10.1126/science.7732382 .
doi: 10.1126/science.7732382
[4]   FELING R H, BUCHANAN G O, MINCER T J, et al. Salinosporamide A: A highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus salinospora[J]. Angewandte Chemie International Edition, 2003, 42(3): 355-357. DOI:10.1002/anie.200390115
doi: 10.1002/anie.200390115
[5]   MARX L B, BURTON J W. A total synthesis of salinosporamide A[J]. Chemistry-A European Journal, 2018, 24(26): 6747-6754. DOI:10.1002/chem.201800046
doi: 10.1002/chem.201800046
[6]   ZHU J, MIX E, WINBLAD B. The antidepressant and antiinflammatory effects of rolipram in the central nervous system[J]. CNS Neuroscience & Therapeutics, 2001, 7(4): 387-398. DOI:10.1111/j.1527-3458.2001.tb00206.x
doi: 10.1111/j.1527-3458.2001.tb00206.x
[7]   MULA M. Brivaracetam for the treatment of epilepsy in adults[J]. Expert Review of Neurotherapeutics, 2014, 14(4): 361-365. DOI:10.1586/14737175. 2014.896200
doi: 10.1586/14737175. 2014.896200
[8]   REZNIKOV A N, KAPRANOV L E, IVANKINA V V, et al. Nitroalkenes in the Ni(II) catalyzed asymmetric michael addition: Convenient route to the key intermediate of brivaracetam[J]. Helvetica Chimica Acta, 2018, 101: e1800170. DOI:10.1002/hlca.201800170
doi: 10.1002/hlca.201800170
[9]   SUKHANOVA A A, NELYUBINA Y V, ZLOTIN S G. Asymmetric synthesis of 3-prenyl-substituted pyrrolidin-2-ones[J]. Mendeleev Communications, 2016, 26: 471-473. DOI:10.1016/j.mencom.2016. 11.003
doi: 10.1016/j.mencom.2016. 11.003
[10]   LANG Q W, GU G X, CHENG Y T, et al. Highly enantioselective synthesis of chiral γ-lactams by Rh-catalyzed asymmetric hydrogenation[J]. ACS Catalysis, 2018, 8(6): 4824-4828. DOI:10.1021/acscatal.8b00827
doi: 10.1021/acscatal.8b00827
[11]   SHI Y J, TAN X F, GAO S, et al. Direct synthesis of chiral NH lactams via Ru-catalyzed asymmetric reductive amination/cyclization cascade of keto acids/esters[J]. Organic Letters, 2020, 22(7): 2707-2713. DOI:10.1021/acs.orglett.0c00669
doi: 10.1021/acs.orglett.0c00669
[12]   ALEKU G A, FRANCE S P, MAN H, et al. A reductive aminase from Aspergillus oryzae[J]. Nature Chemistry, 2017, 9(10): 961-969. DOI:10.1038/nchem.2782
doi: 10.1038/nchem.2782
[13]   KENNEMUR J L, KORTMAN G D, HULL K L. Rhodium-catalyzed regiodivergent hydrothiolation of allyl amines and imines[J]. Journal of the American Chemical Society, 2016, 138(36): 11914-11919. DOI:10.1021/jacs.6b07142
doi: 10.1021/jacs.6b07142
[14]   BLIDI L E, VANTHUYNE N, SIRI D, et al. Switching from (R)- to (S)-selective chemoenzymatic DKR of amines involving sulfanyl radical-mediated racemization[J]. Organic & Biomolecular Chemistry, 2010, 8(18): 4165-4168. DOI:10.1039/c0ob00054j
doi: 10.1039/c0ob00054j
No related articles found!