Please wait a minute...
浙江大学学报(理学版)  2022, Vol. 49 Issue (6): 706-714    DOI: 10.3785/j.issn.1008-9497.2022.06.009
物理学     
色偶极子模型中深度虚康普顿散射过程研究
向文昌1,蔡燕兵1(),周代翠2
1.贵州财经大学 金融物理重点实验室,贵州 贵阳 550025
2.华中师范大学 粒子物理研究所,湖北 武汉 430079
Deeply virtual compton scattering process under the color dipole model
Wenchang XIANG1,Yanbing CAI1(),Daicui ZHOU2
1.Key Laboratory of Econophysics,Guizhou University of Finance and Economics,Guiyang 550025,China
2.Institute of Particle Physics,Central China Normal University,Wuhan 430079,China
 全文: PDF(2124 KB)   HTML( 3 )
摘要:

在色偶极子模型框架下,首次将共线改进的偶极子散射振幅用于研究深度虚康普顿散射(deeply virtual compton scattering,DVCS)过程实光子的产生。首先,利用计算机程序求解微积分形式的共线改进偶极子演化方程,用数值方法求得偶极子散射振幅的解。其次,将共线改进的偶极子散射振幅用于拟合HERA能区DVCS过程实光子产生的实验数据,通过拟合得到微分截面下的χ2/d.o.f?= 0.51和总截面下的χ2/d.o.f = 0.89。最后,利用微分截面分布的理论值,基于dσ/dte-Bt抽取了DVCS过程的斜率,所得结果与HERA能区H1实验组测量结果一致。结果表明,共线改进的偶极子散射振幅能很好地描述DVCS实验数据。

关键词: 深度虚康普顿散射(DVCS)胶子饱和物理遍举衍射过程    
Abstract:

Under the framework of color dipole model, the collinear improved dipole amplitude is applied, for the first time, to study the real photon production in deeply virtual compton scattering (DVCS) processes. Firstly, the numerical solution of the dipole scattering amplitudes are obtained by solving the integro-differential collinear improved dipole evolution equations. The collinear improved dipole scattering amplitudes are then used to fit the real photon production experimental data in DVCS processes at HERA energy. The fitting results are χ2/d.o.f =0.51 for differential cross sections and χ2/d.o.f =0.89 for total cross sections, respectively. Finally, using the theoretical results from the differential cross section distributions, the slope values in DVCS processes are extracted based on dσ/dte-Bt formula. The corresponding results are consistent with the experimental measurements in H1 collaboration at HERA, indicating that the collinear improved dipole amplitude can give a good description for the DVCS experimental data.

Key words: deeply virtual compton scattering (DVCS)    gluon saturation physics    exclusive diffractive process
收稿日期: 2021-09-29 出版日期: 2022-11-23
CLC:  O 572.3  
基金资助: 国家自然科学基金资助项目(12165004);贵州省教育厅滚动支持省属高校科研平台团队项目(黔教技[2022]016号)
通讯作者: 蔡燕兵     E-mail: myparticle@163.com
作者简介: 向文昌(1979—),ORCID:https://orcid.org/0000-0002-6141-013X,男,博士,研究员,主要从事相对论重离子碰撞物理研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
向文昌
蔡燕兵
周代翠

引用本文:

向文昌,蔡燕兵,周代翠. 色偶极子模型中深度虚康普顿散射过程研究[J]. 浙江大学学报(理学版), 2022, 49(6): 706-714.

Wenchang XIANG,Yanbing CAI,Daicui ZHOU. Deeply virtual compton scattering process under the color dipole model. Journal of Zhejiang University (Science Edition), 2022, 49(6): 706-714.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2022.06.009        https://www.zjujournals.com/sci/CN/Y2022/V49/I6/706

图1  色偶极子模型中DVCS过程示意
观测量p0p1p1p2χ2/d.o.f
dσdt0.0119-0.42273.10.0980.51
σ0.0075-0.45500.80.1710.89
表1  DVCS过程实光子产生的拟合参数和χ2/d.o.f
图2  不同Q2和Wγ*p时DVCS过程实光子产生的微分散射截面随| t |的分布情况数据来自H1[36]和ZEUS[37]实验组。
图3  DVCS过程实光子产生的总截面随Q2的变化数据来自H1[36]和ZEUS[37]实验组。
图4  不同Q2时DVCS过程实光子产生的总截面随Wγ*p的变化数据来自H1[36]和ZEUS[37]实验组。
图5  微分截面抽取的斜率B数据来自H1[36]实验组。
1 MCLERRAN L. The color glass condensate[J]. Nuclear Physics A, 2002, 702:49c-64c. DOI:10. 1016/S0375-9474(02)00688-7
doi: 10. 1016/S0375-9474(02)00688-7
2 JALILIAN-MARIAN J, KOVNER A, LEONIDOV A, et al. The BFKL equation from the Wilson renormalization group[J]. Nuclear Physics B, 1997, 504(1/2):415-431. DOI:10.1016/S0550-3213(97)00440-9
doi: 10.1016/S0550-3213(97)00440-9
3 JALILIAN-MARIAN J, KOVNER A, LEONIDOV A, et al. The Wilson renormalization group for low x physics: Towards the high density regime[J]. Physical Review D, 1999, 59(1):432-436. DOI:10.1103/PhysRevD.59.014014
doi: 10.1103/PhysRevD.59.014014
4 IANCU E, LEONIDOV A, MCLERRAN L. Nonlinear gluon evolution in the color glass condensate:I[J]. Nuclear Physics A, 2001, 692(3):583-645. DOI:10.1016/S0375-9474(01)00642-X
doi: 10.1016/S0375-9474(01)00642-X
5 ELENA F, IANCU E, LEONIDOV A, et al. Nonlinear gluon evolution in the color glass condensate: II[J]. Nuclear Physics A, 2002,,703(1/2):489-538. DOI:10. 1016/S0375-9474(01)01329-X
doi: 10. 1016/S0375-9474(01)01329-X
6 KOVCHEGOV Y. Small x F 2 structure function of a nucleus including multiple pomeron exchanges[J]. Physical Review D, 1999, 60(3):034008. DOI:10. 1103/PhysRevD.60.034008
doi: 10. 1103/PhysRevD.60.034008
7 BALITSKY I. Operator expansion for high-energy scattering[J]. Nuclear Physics B, 1996, 463:99-160. DOI:10.1016/0550-3213(95)00638-9
doi: 10.1016/0550-3213(95)00638-9
8 STASTO A M, GOLEC-BIERNAT K, KWIECINSKI J. Geometric scaling for the total γ * p cross section in the low x region[J]. Physical Review Letters, 2000, 86(4):596-599. DOI: 10.1103/Phys RevLett.86.596
doi: 10.1103/Phys RevLett.86.596
9 BALITSKY I. Quark contribution to the small- x evolution of color dipole[J]. Physical Review D, 2007, 75(1):1400. DOI: 10.1103/PhysRevD.75. 014001
doi: 10.1103/PhysRevD.75. 014001
10 KOVCHEGOV Y V, WEIGERT H. Triumvirate of running couplings in small- x evolution[J]. Nuclear Physics A, 2007, 784(1-4):188-226. DOI:10.1016/j.nuclphysa.2006.10.075
doi: 10.1016/j.nuclphysa.2006.10.075
11 BALITSKY I, CHIRILLI G A. Next-to-leading order evolution of color dipoles[J]. Physical Review D, 2008, 77(1):014019. DOI: 10.1103/PhysRevD. 77.014019
doi: 10.1103/PhysRevD. 77.014019
12 ALBACETE J L, ARMESTO N, MILHANO J G, et al. Nonlinear QCD meets data: A global analysis of lepton-proton scattering with running coupling Balitsky-Kovchegov evolution[J]. Physical Review D, 2009, 80(3):034031. DOI:10.1103/PhysRevD. 80.034031
doi: 10.1103/PhysRevD. 80.034031
13 ALBACETE J L. Resummation of double collinear logs in BK evolution versus HERA data[J]. Nuclear Physics A, 2017, 957:71-84. DOI:10.1016/j.nuclphysa.2016.07.008
doi: 10.1016/j.nuclphysa.2016.07.008
14 CHIRILLI G A, XIAO B W, YUAN F. Inclusive hadron productions in collisions[J]. Physical Review D, 2012, 86(5):054005. DOI:10.1103/PhysRevD. 86.054005
doi: 10.1103/PhysRevD. 86.054005
15 FAVART L, MACHADO M. Deeply virtual Compton scattering and saturation approach[J]. European Physical Journal C, 2003, 29(3):365-371. DOI:10.1140/epjc
doi: 10.1140/epjc
16 FAVART L, MACHADO M. QCD evolution and skewedness effects in color dipole description of DVCS[J]. European Physical Journal C, 2004, 34(4):429-433. DOI:10.1140/epjc/s2004-01733-5
doi: 10.1140/epjc/s2004-01733-5
17 CAI Y B, XIANG W C, WANG M L, et al. Exclusive photoproduction of vector meson at next-to-leading order from color glass condensate[J]. Chinese Physics C, 2020, 44(7):074110. DOI:10. 1088/1674-1137/44/7/074110
doi: 10. 1088/1674-1137/44/7/074110
18 ZHANG S Y, CAI S H, XIANG W C, et al. Exclusive and dissociative production with collinear-improved Balitsky-Kovchegov equation[J]. Chinese Physics C, 2021, 45(7):073110. DOI: 10.1088/1674-1137/abfbca
doi: 10.1088/1674-1137/abfbca
19 GONLVES V P, MARTINS L, SAUTER W K. Probing the gluon density of the proton in the exclusive photoproduction of vector mesons at the LHC: A phenomenological analysis[J]. European Physical Journal C, 2016, 76(2):97. DOI:10.1140/epjc/s10052-016-3917-z
doi: 10.1140/epjc/s10052-016-3917-z
20 MOUTARDE H, SZNAJDER P, WAGNER J. Border and skewness functions from a leading order fit to DVCS data[J]. European Physical Journal C, 2018, 78(11):890. DOI:10.1140/epjc/s10052-018-6359-y
doi: 10.1140/epjc/s10052-018-6359-y
21 MARQUET C, PESCHANSKI R, SOYEZ G. Exclusive vector meson production at HERA from QCD with saturation[J]. Physical Review D, 2007, 76(3):034011. DOI:10.1103/PhysRevD.76.034011
doi: 10.1103/PhysRevD.76.034011
22 KOWALSKI H, MOTYKA L, WATT G. Exclusive diffractive processes at HERA within the dipole picture[J]. Physical Review D, 2006, 74(7):388-388. DOI:10.1103/physrevd.74.074016
doi: 10.1103/physrevd.74.074016
23 REZAEIAN A H, SCHMIDT I. Impact-parameter dependent color glass condensate dipole model and new combined HERA data[J]. Physical Review D, 2013, 88(7):074016. DOI:10.1103/PhysRevD.88. 074016
doi: 10.1103/PhysRevD.88. 074016
24 CEPILA J, CONTRERAS J G, KRELINA M. Coherent and incoherent J / ψ photonuclear production in an energy-dependent hot-spot model[J]. Physical Review C, 2018, 97(2):024901. DOI:0.1103/PhysRevC.97.024901
doi: 0.1103/PhysRevC.97.024901
25 MARTIN 1 A D, STIRLING W J, THORNE R S,et al. Parton distributions for the LHC[J]. European Physical Journal C, 2009, 63:189-285. DOI:10. 1140/epjc/s10052-009-1072-5
doi: 10. 1140/epjc/s10052-009-1072-5
26 DEVEE M, SARMA J K. Analysis of the small-x behavior of gluon distribution and a search for gluon recombination[J]. Nuclear Physics B, 2014, 885:571-582. DOI:0.1016/j.nuclphysb.2014.06.005
doi: 0.1016/j.nuclphysb.2014.06.005
27 GOLEC-BIERNAT K, WUSTHOFF M. Saturation effects in deep inelastic scattering at low Q 2 and its implications on diffraction[J]. Physical Review D, 1998, 59(1):014017. DOI:10.1103/PhysRevD. 59.014017
doi: 10.1103/PhysRevD. 59.014017
28 BARTELS J, GOLEC-BIERNAT K, KOWALSKI H. Modification of the saturation model: Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution[J]. Physical Review D, 2002, 66(1): 014001. DOI:10. 1103/PhysRevD.66.014001
doi: 10. 1103/PhysRevD.66.014001
29 IANCU E, ITAKURA K, MUNIER S. Saturation and BFKL dynamics in the HERA data at small-x [J]. Physics Letters B, 2004, 590(3/4):199-208. DOI:10.1016/j.physletb.2004.02.040
doi: 10.1016/j.physletb.2004.02.040
30 ALBACETE J L, KOVCHEGOV Y V. Solving the high energy evolution equation including running coupling corrections[J]. Physical Review D, 2007, 75(12):203-204. DOI:10.1103/PhysRevD.75. 125021
doi: 10.1103/PhysRevD.75. 125021
31 LAPPI T, MANTYSAARI H. Direct numerical solution of the coordinate space Balitsky-Kovchegov equation at next-to-leading order[J]. Physical Review D, 2015, 91(7):074016. DOI:10.1103/PhysRevD.91.074016
doi: 10.1103/PhysRevD.91.074016
32 BEUF G. Improving the kinematics for low-x QCD evolution equations in coordinate space[J]. Physical Review D, 2014, 89(7):074039. DOI:10.1103/PhysRevD.89.074039
doi: 10.1103/PhysRevD.89.074039
33 IANCU E, MADRIGAL J D, MUELLER A H, et al. Collinearly-improved BK evolution meets the HERA data[J]. Physics Letters B, 2015, 750:643-652. DOI:10.1016/j.physletb.2015.09.071
doi: 10.1016/j.physletb.2015.09.071
34 DUCLOUE B, IANCU E, MUELLER A H, et al. Non-linear evolution in QCD at high-energy beyond leading order[J]. Journal of High Energy Physics, 2019, 2019(4):81. DOI:10.1007/JHEP04(2019)081
doi: 10.1007/JHEP04(2019)081
35 MCLERRAN L, VENUGOPALAN R. Boost covariant gluon distributions in large nuclei[J]. Physics Letters B, 1998, 424(1/2):15-24. DOI:10. 1016/S0370-2693(98)00214-7
doi: 10. 1016/S0370-2693(98)00214-7
36 H1 COLLABORATION. Deeply virtual compton scattering and its beam charge asymmetry in e ± p collisions at HERA[J]. Physics Letters B, 2009, 681(5):391-399. DOI:10.1016/j.physletb.2009. 10.035
doi: 10.1016/j.physletb.2009. 10.035
37 COLLABORATION ZEUS. A measurement of the Q 2, W and t dependences of deeply virtual compton scattering at HERA[J]. Journal of High Energy Physics, 2009, 5(5):253-267. DOI:10.1088/1126-6708/2009/05/108
doi: 10.1088/1126-6708/2009/05/108
No related articles found!