Please wait a minute...
浙江大学学报(理学版)  2018, Vol. 45 Issue (2): 219-225    DOI: 10.3785/j.issn.1008-9497.2018.02.012
地球科学     
塔北哈拉哈塘地区走滑断裂分段特征及其与油气成藏的关系
郑晓丽, 安海亭, 王祖君, 肖江, 周红波, 刘士靖
中国石油集团东方地球物理有限责任公司研究院 库尔勒分院, 新疆 库尔勒 841000
The segmentation features of strike-slip fault and its relation with the fault and reservoirs in Halahatang Area, North Tarim Basin
ZHENG Xiaoli, AN Haiting, WANG Zujun, XIAO Jiang, ZHOU Hongbo, LIU Shijing
Korla Institue of BGP, CNPC, Korla 841000, Xinjiang Uygur Autonomous Region, China
 全文: PDF(14190 KB)   HTML  
摘要: 塔北哈拉哈塘地区奥陶系碳酸盐岩油气资源丰富,走滑断裂是该地区油气成藏最主要的控制因素.基于最新的高精度三维地震资料,借助最大波谷振幅属性提取的物探手段,结合走滑断裂的理论模型,探讨了哈拉哈塘地区走滑断裂的分段特征及其与油气成藏的关系.研究表明,哈拉哈塘地区主干走滑断裂平面不是连续不断的,而是由一系列雁列排布的R剪切断裂组成,具有明显的分段性:断阶带(overlap)发育成的P剪切断裂与R剪切整体构成辫状的构造样式;而在R剪切末端,派生出R'剪切、T剪切等次级断裂,组成马尾或羽状构造.不同区带具有不同的油气成藏条件:断阶带,受挤压应力控制发育局部背斜,为油气运移的长期指向区,而背斜翼部沿断层发育的串珠储集体为油气聚集提供了有效空间;走滑断裂末端的马尾构造区,断裂数量多、地势低,发育规模储集体,但油气易沿断裂向高处运移,油气保存条件较差.
关键词: 走滑断裂分段性油气成藏哈拉哈塘塔北    
Abstract: The Ordovician carbonate reservoirs of Halahatang Area, North Tarim Basin, have rich oil and gas resources. It is recognized that the strike-slip faults are the main controlling factors of hydrocarbon accumulation in this region. Based on the 3D seismic interpretation and the maximum trough attribute extraction technique, the formation mechanism, structural characteristics and the relation between the fault and reservoirs are illustrated. Our studies show that, en echelon arranged R shears develop, and form an anastomosing zone with the linking of P shears. At the same time, R' and T shears develop at or near the tips of R shears, which constitute horsetails or wing cracks. Local uplifts form at the contraction overlaps, and the reserving spaces develop at the locations of faults along the fold limb. Branch faults have weak active intensity and shorter time, resulting in being more favorable for oil and gas preservation. In the horsetails structure zone, the number of faults is large and the topography is low, leading to widely developed reservoirs. However, the oil and gas may easily migrate from low to high along the faults, and the preservation condition is bad.
Key words: strike-slip fault    segmentation features    reservoirs    Halahatang    North Tarim Basin
收稿日期: 2016-12-05 出版日期: 2018-03-08
CLC:  P542  
基金资助: 国家科技重大专项(2016ZX05053-17).
作者简介: 郑晓丽(1987-),ORCID:http://orcid.org/0000-0001-9932-7326,女,博士,工程师,主要从事构造地质学研究,E-mail:594432522@qq.com.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郑晓丽
安海亭
王祖君
肖江
周红波
刘士靖

引用本文:

郑晓丽, 安海亭, 王祖君, 肖江, 周红波, 刘士靖. 塔北哈拉哈塘地区走滑断裂分段特征及其与油气成藏的关系[J]. 浙江大学学报(理学版), 2018, 45(2): 219-225.

ZHENG Xiaoli, AN Haiting, WANG Zujun, XIAO Jiang, ZHOU Hongbo, LIU Shijing. The segmentation features of strike-slip fault and its relation with the fault and reservoirs in Halahatang Area, North Tarim Basin. Journal of ZheJIang University(Science Edition), 2018, 45(2): 219-225.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2018.02.012        https://www.zjujournals.com/sci/CN/Y2018/V45/I2/219

[1] SYLVESTER A G, SMITH R R. Tectonic transpression and basement-controlled deformation in San Andreas fault zone, Salton Trough, California[J]. AAPG Bulletin, 1976, 60(12):2081-2102.
[2] COWGILL E, YIN A, ARROWSMITH J R, et al. The Akato Tagh bend along the Altyn Tagh Fault, northwest Tibet:Smoothing by vertical-axis rotation and the effect of topographic stresses on bend-flanking faults[J]. Geological Society of America Bulletin, 2004, 116(11/12):1423-1442.
[3] 朱光,王道轩,刘国生,等. 郯庐断裂带的演化及其对西太平洋板块运动的响应[J]. 地质科学, 2004, 39(1):36-49. ZHU G, WANG D X, LIU G S, et al. Evolution of the Tan-Lu fault zone and its responses to plate movements in west Pacific Basin[J]. Chinese Journal of Geology, 2004, 39(1):36-49.
[4] RAO G, LIN A, YAN B, et al. Co-seismic Riedel shear structures produced by the 2010 Mw, 6.9 Yushu earthquake, central Tibetan Plateau, China[J].Tectonophysics, 2011, 507(s1/2/3/4):86-94.
[5] GOGONENKOV G N, TIMURZIEV A I. Strike-slip faulting in the west Siberian platform:Insights from 3D seismic imagery[J]. Comptes Rendus Geoscience, 2012, 344(314):214-226.
[6] SOTO D M, MANN P, ESCALONA A, et al. Late Holocene strike-slip offset of a subsurface channel interpreted from three-dimensional seismic data, eastern offshore Trinidad[J]. Geology, 2007, 35(9)859-862.
[7] SOTO D M, MANN P, ESCALONA A. Miocene-to-recent structure and basinal architecture along the central range strike-slip fault zone, eastern offshore Trinidad[J]. Marine and Petroleum Geology, 2010, 28:212-234.
[8] 李明杰,胡少华,王庆果,等. 塔中地区走滑断裂体系的发现及其地质意义[J]. 石油地球物理勘探, 2006(1):116-122,130. LI M J, HU S H, WANG Q G, et al. Discovery of strike-slip system in Tazhong area and geologic meaning[J]. Oil Geophysical Prospecting, 2006(1):116-122,130.
[9] BENESH N P, PLESCH A, SHAW J H. Geometry, kinematics, and displacement characteristics of tear-fault systems:An example from the deep-water Niger Delta[J]. AAPG Bulletin, 2014, 98(3):465-482.
[10] CHENG F, JOLIVET M, FU S, et al. Northward growth of the Qimen Tagh Range:A new model accounting for the Late Neogene strike-slip deformation of the SW Qaidam Basin[J].Tectonophysics, 2014, 632:32-47.
[11] 甄素静,汤良杰,李宗杰,等. 塔中北坡顺南地区走滑断裂样式、变形机理及石油地质意义[J]. 天然气地球科学, 2015, 26(12):2315-2324. ZHEN S J, TANG L J, LI Z J, et al. The characteristics, formation and petroleum geology significance of the strike-slip fault system in Shunnan area, northern slope of Tazhong Uplift[J]. Natural Gas Geoscience, 2015, 26(12):2315-2324.
[12] 张承泽,于红枫,张海祖,等. 塔中地区走滑断裂特征、成因及地质意义[J]. 西南石油大学学报(自然科学版), 2008,30(5):22-26,14. ZHANG C Z, YU H F, ZHANG H Z, et al. Characteristic, genesis and geologic meaning of strike-slip fault system in Tazhong area[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2008,30(5):22-26,14.
[13] 邬光辉, 成丽芳,刘玉魁,等. 塔里木盆地寒武-奥陶系走滑断裂系统特征及其控油作用[J]. 新疆石油地质, 2011(3):239-243. WU G H, CHENG L F, LIU Y K, et al. Strike-slip fault system of the Cambrian-Ordovician and its oil-controlling effect in Tarim Basin[J]. Xinjiang Petroleum Geology, 2011(3):239-243.
[14] 廖涛,侯加根,陈利新,等. 断裂对塔北地区哈拉哈塘油田奥陶系非暴露岩溶缝洞型储集层的控制作用[J]. 古地理学报, 2016,18(2):221-235. LIAO T, HOU J G, CHEN L X, et al. Fault controlling on non-exposed karst fracture-vug reservoirs of the Ordovician in Halahatang Oilfield, Northern Tarim Basin[J]. Journal of Palaeogeography, 2016, 18(2):221-235.
[15] 孙东,杨丽莎,王宏斌,等.塔里木盆地哈拉哈塘地区走滑断裂体系对奥陶系海相碳酸盐岩储层的控制作用[J]. 天然气地球科学, 2015(s1):80-87. SUN D, YANG L S, WANG H B, et al. Strike-slip fault system in Halahatang area of Tarim Basin and its control on reservoirs of Ordovician marine carbonate rock[J]. Natural Gas Geoscience, 2015(s1):80-87.
[16] 徐志琴,李思田,张建新,等. 塔里木地块与古亚洲/特提斯构造体系的对接[J]. 岩石学报, 2011,27(3):1-22. XU Z Q, LI S T, ZHANG J X, et al. Paleo-Asian and Tethyan tectonic systems with docking the Tarim block[J]. Acta Petrologica Sinica, 2011,27(3):1-22.
[17] 张学丰,李明, 陈志勇,等. 塔北哈拉哈塘奥陶系碳酸盐岩岩溶储层发育特征及主要岩溶期次[J]. 岩石学报, 2012, 28(3):815-826. ZHANG X F, LI M, CHEN Z Y, et al. Characteristics and karstification of the Ordovician carbonate reservoir, Halahatang area, Northern Tarim Basin[J]. Acta Petrologica Sinica, 2012, 28(3):815-826.
[18] 安海亭,李海银,王建忠,等. 塔北地区构造和演化特征及其对油气成藏的控制[J].大地构造与成矿, 2009,33(1):142-147. AN H T, LI H Y, WANG J Z, et al. Tectonic evolution and its controlling on oil and gas accumulation in the Northern Tarim Basin[J]. Geotectonica et Metallogenia, 2009, 33(1):142-147.
[19] SYLVESTER A G. Strike-slip fault[J].Geological Society of America Bulletin, 1988, 100:1666-1703.
[20] NAYLOR M A, MANDL G, SUPESTEIJN C. Fault geometries in basement-induced wrench faulting under different initial stress states[J]. Journal of Structural Geology, 1986, 8(7):737-752.
[21] MITRA S, PAUL D. Structural geometry and evolution of releasing and restraining bends:Insights from laser-scanned experimental models[J].AAPG Bulletin, 2011,95(7):1147-1180.
[22] MCCLAY K, BONORA M. Analog models of restrainingstopovers in strike-slip fault systems[J]. AAPG Bulletin, 2001,85(2):233-260
[1] 刘芋杰,吴孔友,刘寅,何瑞武,杜彦男,刘军,张冠杰. 走滑断裂分段叠置区物理模拟及构造差异性解析——以塔里木盆地顺北1号断裂为例[J]. 浙江大学学报(理学版), 2022, 49(3): 363-375.