Please wait a minute...
浙江大学学报(理学版)  2022, Vol. 49 Issue (3): 363-375    DOI: 10.3785/j.issn.1008-9497.2022.03.014
地球科学     
走滑断裂分段叠置区物理模拟及构造差异性解析——以塔里木盆地顺北1号断裂为例
刘芋杰1(),吴孔友1(),刘寅1,何瑞武2,杜彦男1,刘军3,张冠杰1
1.中国石油大学(华东) 地球科学与技术学院,山东 青岛 266580
2.中国石化胜利油田分公司,山东 东营 257000
3.中国石化西北油田分公司,新疆 乌鲁木齐 830011
Analogue modeling and structural differences of stepovers of strike slip faults: A case from Shunbei-1 fault of Tarim Basin
Yujie LIU1(),Kongyou WU1(),Yin LIU1,Ruiwu HE2,Yannan DU1,Jun LIU3,Guanjie ZHANG1
1.School of Geosciences,China University of Petroleum (East China),Qingdao 266580,Shandong Province,China
2.Sinopec Shengli Oilfield Company,Dongying 257000,Shandong Province,China
3.Sinopec Northwest Oilfield Company,Urumqi 830011,China
 全文: PDF(10279 KB)   HTML( 3 )
摘要:

走滑断裂分段叠置区通常包括拉分叠置区和挤压叠置区,其形成及演化与油气藏关系密切,其内部构造特征对油气运聚具有重要影响。塔里木盆地顺托果勒地区顺北1号断裂叠置区分段发育特征明显,油气勘探表明,拉分叠置区和挤压叠置区对油气运聚的控制能力有一定差异。在分析构造特征的基础上,对走滑断裂拉分叠置区和挤压叠置区开展了物理模拟实验研究,结果显示,拉分叠置区内发育有多组里德尔(R)剪切和压剪性(P)剪切,在叠置区内多组断裂组成一套平面范围较小、垂向断距较大的雁列地堑系统;挤压叠置区内仅发育一组R剪切、P剪切及单条共轭里德尔(R')剪切,并在叠置区内形成平面范围较大、垂向断距较小的地垒。因此认为,基底断裂的几何形态、运动性质是控制叠置区发育类型的关键因素。叠置区内断裂发育的数量、规模均受控于总走滑量,并与之呈正相关。相较于挤压叠置区,拉分叠置区的断层数更多,分布更密且地层破碎变形程度更高。在构造特征及力学机制上,拉分叠置区均表现出更强的油气富集潜力。

关键词: 走滑断裂拉分叠置区挤压叠置区构造物理模拟顺托果勒低隆    
Abstract:

Stepovers in strike-slip fault zones are usually associated with both releasing bends and restraining bends, whose occurrence and evolution are closely related with the hydrocarbon accumulation. Specifically, the structural difference between these two structures could significantly influence hydrocarbon migration and accumulation. Exploration data of the Shunbei-1 fault in the Shuntuoguole area of the Tarim Basin reflect that hydrocarbons are more enriched in releasing bends than the restraining bends. Based on the studies of structural characteristics of the Shunbei-1 Fault, we conducted the simulation experiments to investigate the internal characteristics of these stepovers. Our results suggest that multiple sets of Riedel (R) shears and P shears are developed in the releasing bends, constituting an echelon pattern fault system, which shows a small range of deformation in the plan view and a large vertical displacement at the stepover in the section view. In contrast, only one set of R shear, one set of P shear, and an individual set of R' shear are observed in the restraining bends, forming a horst with a large range of deformation in the plan view and a small vertical fault displacement at the stepover in the section view. In general, the geometry and kinematic characteristics of basement faults are believed to be the key factors that control the development of types of stepovers. Moreover, the strike-slip displacement is found to be positively correlated with the number and scale of faults at the stepover. Specifically, compared with restraining bends, the releasing bends are characterized by a larger number of faults with denser planar distributions as well as strong strata deformation, and they are more favorable for hydrocarbon enrichment because of their structural characteristics and mechanical mechanisms.

Key words: strike-slip faults    releasing bends    restraining bends    analogue modeling    Shuntuoguole lower uplift
收稿日期: 2021-03-18 出版日期: 2022-05-24
CLC:  P 542  
基金资助: 中国科学院战略性先导科技专项A类(XDA14010301)
通讯作者: 吴孔友     E-mail: 834402948@qq.com;wukongyou@163.com
作者简介: 刘芋杰(1996—),ORCID: https://orcid.org/0000-0002-7125-7263,男,硕士研究生,主要从事构造地质学研究,E-mail:834402948@qq.com.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘芋杰
吴孔友
刘寅
何瑞武
杜彦男
刘军
张冠杰

引用本文:

刘芋杰,吴孔友,刘寅,何瑞武,杜彦男,刘军,张冠杰. 走滑断裂分段叠置区物理模拟及构造差异性解析——以塔里木盆地顺北1号断裂为例[J]. 浙江大学学报(理学版), 2022, 49(3): 363-375.

Yujie LIU,Kongyou WU,Yin LIU,Ruiwu HE,Yannan DU,Jun LIU,Guanjie ZHANG. Analogue modeling and structural differences of stepovers of strike slip faults: A case from Shunbei-1 fault of Tarim Basin. Journal of Zhejiang University (Science Edition), 2022, 49(3): 363-375.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2022.03.014        https://www.zjujournals.com/sci/CN/Y2022/V49/I3/363

图1  塔里木盆地顺托果勒地区T74界面主要断裂分布(据文献[5]修改)
图2  顺北断裂三维地震平面属性图及剖面解释T60:海西早期构造不整合面;T70:奥陶系顶界面;T74:中下奥陶统顶界面;T90:震旦系底界面。
图3  顺北1号断裂不同断裂带单位平均压降产油量统计结果(据文献[16]统计)
图4  实验装置平面与剖面示意
图5  不同走滑量下拉分叠置区平面与解释
  
图6  拉分叠置模型线解剖面(剖面位置见图5)
图7  不同层位断距分析
图8  不同走滑量下挤压叠置区平面与解释
  
图9  挤压叠置模型线解剖面(剖面位置见图8)
图10  剖面位置与倾角及断距的关系
1 MANN P, HEMPTON M R, BRADLEY D C, et al. Development of pull-apart basins[J]. Journal of Geology, 1983, 91(5): 529-554. doi:10.1086/628803
doi: 10.1086/628803
2 MANN P. Global catalogue, classification and tectonic origins of restraining and releasing bends on active and ancient strike-slip fault systems[J]. Geological Society, 2007, 290(1): 13-142. DOI:10. 1144/SP290.2
doi: 10. 1144/SP290.2
3 邓尚, 刘雨晴, 刘军, 等. 克拉通盆地内部走滑断裂发育、演化特征及其石油地质意义: 以塔里木盆地顺北地区为例[J]. 大地构造与成矿学, 2020, 45: 1-16. DOI:10.16539/j.ddgzyckx.2020.05.015
DENG S, LIU Y Q, LIU J, et al. Structural styles and evolution models of intracratonic strike-slip faults and the implications for reservoir exploration and appraisal: A case study of the Shunbei area, Tarim Basin[J]. Geotectonica et Metallogenia, 2020, 45: 1-16. DOI:10.16539/j.ddgzyckx.2020.05.015
doi: 10.16539/j.ddgzyckx.2020.05.015
4 邓尚, 李慧莉, 韩俊, 等. 塔里木盆地顺北5号走滑断裂中段活动特征及其地质意义[J]. 石油与天然气地质, 2019, 40(5): 990-998, 1073. DOI:10.11743/ogg20190504
DENG S, LI H L, HAN J, et al. Characteristics of the central segment of Shunbei 5 strike-slip fault zone in Tarim Basin and its geological significance[J]. Oil & Gas Geology, 2019, 40(5): 990-998,1073. DOI:10.11743/ogg20190504
doi: 10.11743/ogg20190504
5 郑晓丽, 安海亭, 王祖君, 等. 塔北哈拉哈塘地区走滑断裂分段特征及其与油气成藏的关系[J]. 浙江大学学报(理学版), 2018, 45(2): 219-225. DOI:10.3785/j.issn.1008-9497.2018.02.012
ZHENG X L, AN H T, WANG Z J, et al. The segmentation features of strike-slip fault and its relation with the fault and reservoirs in Halahatang area,North Tarim Basin[J]. Journal of Zhejiang University(Science Edition), 2018, 45(2): 219-225. DOI:10.3785/j.issn.1008-9497.2018.02.012
doi: 10.3785/j.issn.1008-9497.2018.02.012
6 DENG Q D, WU D N, ZHANG P Z, et al. Structure and deformational character of strike-slip fault zones[J]. Pure and Applied Geophysics, 1986, 124(1): 203-223. DOI:10.1007/BF00875726
doi: 10.1007/BF00875726
7 ANGELIER J, BERGERAT F, BELLOU M, et al. Co-seismic strike-slip fault displacement determined from push-up structures: The Selsund Fault case, South Iceland[J]. Journal of Structural Geology, 2004, 26(4): 709-724. DOI:10.1016/j.jsg.2003.07.006
doi: 10.1016/j.jsg.2003.07.006
8 RAO G, LIN A M, YAN B, et al. Co-seismic Riedel shear structures produced by the 2010 MW 6.9 Yushu earthquake, central Tibetan Plateau, China[J]. Tectonophysics, 2011, 507(1-4): 86-94. doi:10.1016/j.tecto.2011.05.011
doi: 10.1016/j.tecto.2011.05.011
9 肖阳, 邬光辉, 雷永良, 等. 走滑断裂带贯穿过程与发育模式的物理模拟[J]. 石油勘探与开发, 2017, 44(3): 340-348. DOI:10.11698/PED.2017.03.03
XIAO Y, WU G H, LEI Y L, et al. Analogue modeling of through-going process and development pattern of strike-slip fault zone[J]. Petroleum Exploration and Development, 2017, 44(3): 340-348. DOI:10.11698/PED.2017.03.03
doi: 10.11698/PED.2017.03.03
10 ATMAOUI N, KUKOWSKI N, STÖCKHERT B, et al. Initiation and development of pull-apart basins with Riedel shear mechanism: Insights from scaled clay experiments[J]. International Journal of Earth Sciences, 2006, 95(2): 225-238. DOI:10.1007/s00531-005-0030-1
doi: 10.1007/s00531-005-0030-1
11 KELLER J V A, HALL S H, MCCLAY K R, et al. Shear fracture pattern and microstructural evolution in transpressional fault zones from field and laboratory studies[J]. Journal of Structural Geology, 1997, 19(9): 1173-1187. DOI:10.1016/S0191-8141(97)00042-4
doi: 10.1016/S0191-8141(97)00042-4
12 MCCLAY K, DOOLEY T. Analog models of pull-apart basins[J]. Geology, 1995, 23(8): 711-714. DOI:10.1130/0091-7613(1995)023<0711:AMOPAB>2.3.CO;2
doi: 10.1130/0091-7613(1995)023<0711:AMOPAB>2.3.CO;2
13 WU J E, MCCLAY K, WHITEHOUSE P, et al. 4D analogue modelling of transtensional pull-apart basins[J]. Marine and Petroleum Geology, 2009, 26(8): 1608-1623. DOI:10.1016/j.marpetgeo.2008. 06.007
doi: 10.1016/j.marpetgeo.2008. 06.007
14 任健, 官大勇, 陈兴鹏, 等. 走滑断裂叠置拉张区构造变形的物理模拟及启示[J]. 大地构造与成矿学, 2017, 41(3): 455-465. DOI:10.16539/j.ddgzyckx. 2017.03.003
REN J, GUAN D Y, CHEN X P, et al. Analogue modeling of structural deformation in releasing stepovers of strike-slip faults and its significance[J]. Geotectonica et Metallogenia, 2017, 41(3): 455-465. DOI:10.16539/j.ddgzyckx.2017.03.003
doi: 10.16539/j.ddgzyckx.2017.03.003
15 DOOLEY T P, SCHREURS G. Analogue modelling of intraplate strike-slip tectonics: A review and new experimental results[J]. Tectonophysics, 2012, 574/575: 1-71. DOI:10.1016/j.tecto.2012.05.030
doi: 10.1016/j.tecto.2012.05.030
16 NAYLOR M A, MANDL G, SUPESTEIJN C H K, et al. Fault geometries in basement-induced wrench faulting under different initial stress states[J]. Journal of Structural Geology, 1986, 8(7): 737-752. DOI:10.1016/0191-8141(86)90022-2
doi: 10.1016/0191-8141(86)90022-2
17 RICHARD P D, NAYLOR M A, KOOPMAN A, et al. Experimental models of strike-slip tectonics[J]. Petroleum Geoscience, 1995, 1(1): 71-80. DOI:10.1144/petgeo.1.1.71
doi: 10.1144/petgeo.1.1.71
18 漆立新. 塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义[J]. 中国石油勘探, 2016, 21(3): 38-51. DOI:10.3969/j.issn.1672-7703.2016. 03.004
QI L X. Oil and gas breakthrough in ultra-deep Ordovician carbonate formations in Shuntuoguole uplift, Tarim Basin[J]. China Petroleum Exploration, 2016, 21(3): 38-51. DOI:10.3969/j.issn.1672-7703.2016.03.004
doi: 10.3969/j.issn.1672-7703.2016.03.004
19 曹自成, 路清华, 顾忆, 等. 塔里木盆地顺北油气田1号和5号断裂带奥陶系油气藏特征[J]. 石油与天然气地质, 2020, 41(5): 975-984. DOI:10.11743/ogg20200508
CAO Z C, LU Q H, GU Y, et al. Characteristics of ordovician reservoirs in Shunbei 1 and 5 fault zones, Tarim Basin[J]. Oil & Gas Geology, 2020, 41(5): 975-984. DOI:10.11743/ogg20200508
doi: 10.11743/ogg20200508
20 刘宝增. 塔里木盆地顺北地区油气差异聚集主控因素分析——以顺北1号、顺北5号走滑断裂带为例[J]. 中国石油勘探, 2020, 25(3): 83-95. DOI:10.3969/j.issn.1672-7703.2020.03.008
LIU B Z. Analysis of main controlling factors of oil and gas differential accumulation in Shunbei area, Tarim Basin: Taking Shunbei No.1 and No.5 strike slip fault zones as examples[J]. China Petroleum Exploration, 2020, 25(3): 83-95. DOI:10.3969/j.issn.1672-7703.2020.03.008
doi: 10.3969/j.issn.1672-7703.2020.03.008
21 汤良杰. 略论塔里木盆地主要构造运动[J]. 石油实验地质, 1997(2): 108-114. doi:10.11781/sysydz199702108
TANG L J. An Approach to major tectogenesis of Tarim Basin[J]. Experimental Petroleum Geology, 1997(2): 108-114. doi:10.11781/sysydz199702108
doi: 10.11781/sysydz199702108
22 何登发, 贾承造, 李德生, 等. 塔里木多旋回叠合盆地的形成与演化[J]. 石油与天然气地质, 2005, 26(1): 64-77. DOI:10.3321/j.issn:0253-9985.2005.01.010
HE D F, JIA C Z, LI D S, et al. Formation and evolution of polycyclic superimposed Tarim Basin[J]. Oil & Gas Geology, 2005, 26(1): 64-77. DOI:10. 3321/j.issn:0253-9985.2005.01.010
doi: 10. 3321/j.issn:0253-9985.2005.01.010
23 林畅松, 李思田, 刘景彦, 等. 塔里木盆地古生代重要演化阶段的古构造格局与古地理演化[J]. 岩石学报, 2011, 27(1): 210-218. doi:10.1016/j.jseaes.2011.10.004
LIN C S, LI S T, LIU J Y, et al. Tectonic framework and paleogeographic evolution of the Tarim Basin during the paleozoic major evolutionary stages[J]. Acta Petrologica Sinica, 2011, 27(1): 210-218. doi:10.1016/j.jseaes.2011.10.004
doi: 10.1016/j.jseaes.2011.10.004
24 邬光辉, 邓卫, 黄少英, 等. 塔里木盆地构造——古地理演化[J]. 地质科学, 2020, 55(2): 305-321. DOI:10.12017/dzkx.2020.020
WU G H, DENG W, HUANG S Y, et al. Tectonic‑paleogeographic evolution in the Tarim Basin[J]. Chinese Journal of Geology, 2020, 55(2): 305-321. DOI:10.12017/dzkx.2020.020
doi: 10.12017/dzkx.2020.020
25 贾承造. 塔里木盆地构造特征与油气聚集规律[J]. 新疆石油地质, 1999, 20(3): 177-183. DOI:10.3969/j.issn.1001-3873.1999.03.001
JIA C Z. Structural characteristics and oil/gas accumulative regularity in Tarim Basin[J]. Xinjiang Petroleum Geology, 1999, 20(3): 177-183. DOI:10.3969/j.issn.1001-3873.1999.03.001
doi: 10.3969/j.issn.1001-3873.1999.03.001
26 韩剑发, 苏洲, 陈利新, 等. 塔里木盆地台盆区走滑断裂控储控藏作用及勘探潜力[J]. 石油学报, 2019, 40(11): 1296-1310. doi:10.7623/syxb201911002
HAN J F, SU Z, CHEN L X, et al. Reservoir-controlling and accumulation-controlling of strike-slip faults and exploration potential in the platform of Tarim Basin[J]. Acta Petrolei Sinica, 2019, 40(11): 1296-1310. doi:10.7623/syxb201911002
doi: 10.7623/syxb201911002
27 吕海涛, 韩俊, 张继标, 等. 塔里木盆地顺北地区超深碳酸盐岩断溶体发育特征与形成机制[J]. 石油实验地质, 2021, 43(1): 14-22. DOI:10.11781/sysydz202101014
LYU H T, HAN J, ZHANG J B, et al. Development characteristics and formation mechanism of ultra-deep carbonate fault-dissolution body in Shunbei area, Tarim Basin[J]. Petroleum Geology and Experiment, 2021, 43(1): 14-22. DOI:10.11781/sysydz202101014
doi: 10.11781/sysydz202101014
28 龚洪林, 邬光辉, 姚清洲, 等. 塔里木盆地新元古代构造演化及其油气地质意义[J]. 新疆石油天然气, 2018, 14(1): 1-7. doi:10.3969/j.issn.1673-2677.2018.01.002
GONG H L, WU G H, YAO Q Z, et al. The tectonic evolution and its oil and gas prospect of Tarim Basin in neoproterozoic[J]. Xinjiang Oil & Gas, 2018, 14(1): 1-7. doi:10.3969/j.issn.1673-2677.2018.01.002
doi: 10.3969/j.issn.1673-2677.2018.01.002
29 漆立新, 云露. 塔里木台盆区碳酸盐岩成藏模式与勘探实践[J]. 石油实验地质, 2020, 42(5): 867-876. DOI:10.11781/sysydz202005867
QI L X, YUN L. Carbonate reservoir forming model and exploration in Tarim Basin[J]. Petroleum Geology and Experiment, 2020, 42(5): 867-876. DOI:10.11781/sysydz202005867
doi: 10.11781/sysydz202005867
30 汤良杰. 塔里木盆地构造演化与构造样式[J]. 地球科学, 1994(6), 742-754.
TANG L J. Evolution and tectonic patterns of Tarim Basin[J]. Earth Science, 1994(6), 742-754.
31 邬光辉, 李浩武, 徐彦龙, 等. 塔里木克拉通基底古隆起构造-热事件及其结构与演化[J]. 岩石学报, 2012, 28(8): 2435-2452.
WU G H, LI H W, XU Y L, et al. The tectonothermal events, architecture and evolution of Tarim craton basement palaeo-uplifts[J]. Acta Petrologica Sinica, 2012, 28(8): 2435-2452.
32 田雷, 崔海峰, 刘军, 等. 塔里木盆地早、中寒武世古地理与沉积演化[J]. 石油与天然气地质, 2018, 39(5): 1011-1021. DOI:10.11743/ogg20180415
TIAN L, CUI H F, LIU J, et al. Early-middle cambrian paleogeography and depositional evolution of Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5): 1011-1021. DOI:10.11743/ogg20180415
doi: 10.11743/ogg20180415
33 李传新, 贾承造, 李本亮, 等. 塔里木盆地塔中低凸起北斜坡古生代断裂展布与构造演化[J]. 地质学报, 2009, 83(8): 1065-1073. DOI:10.3321/j.issn:0001-5717.2009.08.002
LI C X, JIA C Z, LI B L, et al. Distribution and tectonic evolution of the paleozoic fault system, the north slope of Tazhong uplift, Tarim Basin[J]. Acta Geologica Sinica, 2009, 83(8): 1065-1073. DOI:10.3321/j.issn:0001-5717.2009.08.002
doi: 10.3321/j.issn:0001-5717.2009.08.002
34 许效松, 汪正江, 万方, 等. 塔里木盆地早古生代构造古地理演化与烃源岩[J]. 地学前缘, 2005, 12(3): 49-57. DOI:10.3321/j.issn:1005-2321.2005.03.007
XU X S, WANG Z J, WANG F, et al. Tectonic paleogeographic evolution and source rocks of the early paleozoic in the Tarim Basin[J]. Earth Science Frontiers, 2005, 12(3): 49-57. DOI:10.3321/j.issn:1005-2321.2005.03.007
doi: 10.3321/j.issn:1005-2321.2005.03.007
35 张光亚, 赵文智, 王红军, 等. 塔里木盆地多旋回构造演化与复合含油气系统[J]. 石油与天然气地质, 2007, 28(5): 653-663. DOI:10.3321/j.issn:0253-9985.2007.05.017
ZHANG G Y, ZHAO W Z, WANG H J, et al. Multicycle tectonic evolution and composite petroleum systems in the Tarim Basin[J]. Oil & Gas Geology, 2007, 28(5): 653-663. DOI:10.3321/j.issn:0253-9985.2007.05.017
doi: 10.3321/j.issn:0253-9985.2007.05.017
36 杨鑫, 徐旭辉, 邓尚, 等. 塔里木西南大陆边缘原特提斯洋构造演化[J]. 地球科学, 2020, 45(11): 4153-4175.
YANG X, XU X H, DENG S, et al. Proto-tethys tectonic evolution from ordovician to devonian in southwestern margin of Tarim Block, NW China[J]. Earth Scienc, 2020, 45(11): 4153-4175.
37 李慧莉, 李婧婧, 杨素举, 等. 塔里木盆地顺托果勒地区志留系成藏特征与勘探启示[J]. 石油与天然气地质, 2020, 41(5): 941-952. DOI:10.11743/ogg20200505
LI H L, LI J J, YANG S J, et al. Hydrocarbon accumulation characteristics of the Silurian reservoirs in Shuntuoguole region of Tarim Basin and their exploration significance[J]. Oil & Gas Geology, 2020, 41(5): 941-952. DOI:10.11743/ogg20200505
doi: 10.11743/ogg20200505
38 王玉伟, 陈红汉, 郭会芳, 等. 塔里木盆地顺1走滑断裂带超深储层油气充注历史[J]. 石油与天然气地质, 2019, 40(5): 972-989. DOI:10.11743/ogg20190503
WANG Y W, CHEN H H, GUO H F, et al. Hydrocarbon charging history of the ultra-deep reservoir in Shun 1 strike-slip fault zone, Tarim Basin[J]. Oil & Gas Geology, 2019, 40(5): 972-989. DOI:10.11743/ogg20190503
doi: 10.11743/ogg20190503
39 邓尚, 李惠莉, 张仲培, 等. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系[J]. 石油与天然气地质, 2018, 39(5): 878-888. DOI:10.11743/ogg20180503
DENG S, LI H L, ZHANG Z P, et al. Characteristics of differential activities in major strike-slip fault zones and their control on hydrocarbon enrichment in Shunbei area and its surroundings, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5): 878-888. DOI:10.11743/ogg20180503
doi: 10.11743/ogg20180503
40 田方磊, 何登发, 陈槚俊, 等. 塔里木盆地顺托果勒低隆及邻区加里东中期运动面的构造性质[J]. 地质科学, 2020, 55(3): 813-828. DOI:10.12017/dzkx.2020.050
TIAN F L, HE D F, CHEN J J, et al. Structural properties of the mid-caledonian movement surfaces in the Shuntuoguole lower uplift and adjacent area, Tarim Basin[J]. Chinese Journal of Geology, 2020, 55(3): 813-828. DOI:10.12017/dzkx.2020.050
doi: 10.12017/dzkx.2020.050
41 郑晓丽, 安海亭, 王祖君, 等. 哈拉哈塘地区走滑断裂与断溶体油藏特征[J]. 新疆石油地质, 2019, 40(4): 449-455. DOI:10.7657/XJPG20190408
ZHENG X L, AN H T, WANG Z J, et al. Characteristics of strike-slip faults and fault-karst carbonate reservoirs in Halahatang area, Tarim Basin[J]. Xinjiang Petroleum Geology, 2019, 40(4): 449-455. DOI:10.7657/XJPG20190408
doi: 10.7657/XJPG20190408
42 王新新, 崔德育, 孙崇浩, 等. 哈拉哈塘油田A地区断裂特征及其控油作用[J]. 地质力学学报, 2019, 25(6): 1058-1067. DOI:10.12090/j.issn.1006-6616. 2019.25.06.088
WANG X X, CUI D Y, SUN C H, et al. Characteristics of strike-slip fault and its controlling on oil in block A of the Halahatang olifield, Tarim Basin[J]. Journal of Geomechanics, 2019, 25(6): 1058-1067. DOI:10. 12090/j.issn.1006-6616.2019.25.06.088
doi: 10. 12090/j.issn.1006-6616.2019.25.06.088
43 胡志伟, 徐长贵, 王德英, 等. 渤海海域走滑断裂叠合特征与成因机制[J]. 石油勘探与开发, 2019, 46(2): 254-267. DOI:10.11698/PED.2019.02.06
HU Z W, XU C G, WANG D Y, et al. Superimposed characteristics and genetic mechanism of strike-slip faults in the Bohai Sea, China[J]. Petroleum Exploration and Development, 2019, 46(2): 254-267. DOI:10.11698/PED.2019.02.06
doi: 10.11698/PED.2019.02.06
44 余一欣, 周心怀, 徐长贵, 等. 渤海海域断裂相互作用及其油气地质意义[J]. 石油与天然气地质, 2018, 39(1): 11-19. DOI:10.11743/ogg20180102
YU Y X, ZHOU X H, XU C G, et al. Fault interactions and their significances for hydrocarbon accumulation in offshore Bohai Bay Basin,eastern China[J]. Oil & Gas Geology, 2018, 39(1): 11-19. DOI:10.11743/ogg20180102
doi: 10.11743/ogg20180102
45 李伟, 陈兴鹏, 吴智平, 等. 渤海海域辽中南洼压扭构造带成因演化及其控藏作用[J]. 高校地质学报, 2016, 22(3): 502-511. DOI:10.16108/j.issn1006-7493.2015202
LI W, CHEN X P, WU Z P, et al. Study on the origin and evolution of transpressional structural belt and its control on oil and gas accumulation in the south of Liaozhong Sub-sag, Bohai Sea area[J]. Geological Journal of China Universities, 2016, 22(3): 502-511. DOI:10.16108/j.issn1006-7493.2015202
doi: 10.16108/j.issn1006-7493.2015202
46 SYLVESTER A G. Wrench-fault tectonics[J]. American Association of Petroleum Geologists (Reprint Series), 1984, 28: 374.
47 罗群. 断裂控烃理论的概念、原理、模式与意义[J]. 石油勘探与开发, 2010, 37(3): 316-324. doi:10.1016/s1876-3804(10)60035-3
LUO Q. Concept, principle, model and significance of the fault controlling hydrocarbon theory[J]. Petroleum Exploration and Development, 2010, 37(3): 316-324. doi:10.1016/s1876-3804(10)60035-3
doi: 10.1016/s1876-3804(10)60035-3
48 邬光辉, 张韬, 朱永峰, 等. 碳酸盐岩断裂破碎带结构、分布与发育机制[J]. 地质科学, 2020, 55(1): 68-80. DOI:10.12017/dzkx.2020.006
WU G H, ZHANG T, ZHU Y F, et al. The architecture, distribution and growth of carbonate fault damage zone[J]. Chinese Journal of Geology, 2020, 55(1): 68-80. DOI:10.12017/dzkx.2020.006
doi: 10.12017/dzkx.2020.006
[1] 郑晓丽, 安海亭, 王祖君, 肖江, 周红波, 刘士靖. 塔北哈拉哈塘地区走滑断裂分段特征及其与油气成藏的关系[J]. 浙江大学学报(理学版), 2018, 45(2): 219-225.