Please wait a minute...
浙江大学学报(理学版)  2024, Vol. 51 Issue (3): 370-380    DOI: 10.3785/j.issn.1008-9497.2024.03.015
环境科学     
ZnCl2改性海藻基生物炭去除水体中诺氟沙星的性能及循环利用性研究
张明志1,林智2,厉子龙1(),周亚蕊1,刘珉琦2,魏泽慧1,吴硕1
1.浙江大学 海洋学院,浙江 舟山 316021
2.浙江交投矿业有限公司,浙江 舟山 316000
Removal of norfloxacin by ZnCl2-modified biochar-activated sulfate and investigation of its loadability on geopolymers
Mingzhi ZHANG1,Zhi LIN2,Zilong LI1(),Yarui ZHOU1,Minqi LIU2,Zehui WEI1,Shuo WU1
1.Ocean College,Zhejiang University,Zhoushan 316021,Zhejiang Province,China
2.Zhejiang Jiaotou Mining Co. Ltd. ,Zhoushan 316000,Zhejiang Province,China
 全文: PDF(2381 KB)   HTML( 0 )
摘要:

过硫酸盐高级氧化工艺(PS-AOPs)因具有氧化能力强、选择性高等优点在抗生素废水处理方面具有广阔的应用前景。选取羊栖菜为研究对象,采用氯化锌(ZnCl2)共热裂解法,制备了ZnCl2改性羊栖菜生物炭(YQZn),并将其作为催化剂活化过二硫酸盐(PDS),降解水体中的诺氟沙星(NOR)。结果显示,不同的ZnCl2添加量对生物炭催化活性的影响不同,当ZnCl2与羊栖菜的质量比为1∶1时,催化活性最佳。采用扫描电镜(SEM)、Brunauer-Emmet-Teller(BET)方法、X射线衍射(XRD)分析等表征YQZn的理化性质,探究了ZnCl2的改性机理,同时研究了不同反应条件对YQZn催化活性的影响。结果表明,在PDS浓度为1 mmol·L-1、改性生物炭添加量为0.3 g·L-1、pH为9、NOR浓度为10 mg·L-1的条件下,NOR的去除率最高,可达95.09%。自由基淬灭实验结果表明,SO4·-和HO?自由基在氧化作用中占主导地位,1O2的作用较为有限。针对粉末生物炭回收困难的问题,将YQZn负载至多孔地质聚合物上,制备了复合物GB。重复利用性实验表明,GB具有良好的降解活性和优良的重复利用性,可有效去除96.68%的NOR。

关键词: 改性生物炭氯化锌改性诺氟沙星降解地质聚合物羊栖菜    
Abstract:

Advanced oxidative processes of persulfate (PS-AOPs) have promising applications in antibiotic wastewater treatment due to their strong oxidation capacity and good selectivity. In this study, Sargassum fusiforme was selected as a raw biomass, and ZnCl2 carbonation-pyrolysis was adopted to prepare zinc chloride modified sheep sorrel biochar which was used as a catalyst to catalyze persulfate (PDS) to degrade the norfloxacin (NOR) in the water. The results showed that different ratios of ZnCl2 doping would significantly affect the performance of biochar, and the catalytic efficiency of the prepared biochar was optimal when the ratio of algal powder to ZnCl2 was 1∶1. Moreover, SEM, BET, XRD characterizations were employed to investigate the physical and chemical properties of YQZn in order to further explore the modification mechanism of ZnCl2. The catalytic efficiency result of YQZn under different conditions showed that the biochar had the best NOR removal rate of 95.09% under the conditions of PDS concentration was 1 mmol·L-1, modified biochar addition was 0.3 g·L-1, pH=9 and NOR concentration was 10 mg·L-1. SO4·-, HO· radicals, and 1O2 played a leading role in activating PDS in the system by free radical quenching. To solve the difficulties in biochar powder recovery YQZn geopolymer composite catalyst (GB) was prepared by using biochar loaded on porous geopolymer. The results showed that GB had excellent degradation activity and reuse performance, which successfully realized the loading and recycling of biochar, and thus had great potential for continuous treatment of norfloxacin in water.

Key words: modified biochar    ZnCl2 modification    norfloxacin degradation    geopolymer    Sargassum fusiforme
收稿日期: 2023-03-07 出版日期: 2024-05-07
CLC:  X 703  
基金资助: 舟山市科技局市级科技合作项目(2022C13039)
通讯作者: 厉子龙     E-mail: zilongli@zju.edu.cn
作者简介: 张明志(1998—),ORCID:https://orcid.org/0009-0000-8857-8381,男,硕士,主要从事水处理研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张明志
林智
厉子龙
周亚蕊
刘珉琦
魏泽慧
吴硕

引用本文:

张明志,林智,厉子龙,周亚蕊,刘珉琦,魏泽慧,吴硕. ZnCl2改性海藻基生物炭去除水体中诺氟沙星的性能及循环利用性研究[J]. 浙江大学学报(理学版), 2024, 51(3): 370-380.

Mingzhi ZHANG,Zhi LIN,Zilong LI,Yarui ZHOU,Minqi LIU,Zehui WEI,Shuo WU. Removal of norfloxacin by ZnCl2-modified biochar-activated sulfate and investigation of its loadability on geopolymers. Journal of Zhejiang University (Science Edition), 2024, 51(3): 370-380.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2024.03.015        https://www.zjujournals.com/sci/CN/Y2024/V51/I3/370

活化途径活化位点
自由基SO4·-,HO?持久性自由基,含氧官能团,sp2杂化碳网络,金属离子的氧化还原,缺陷
O2·-持久性自由基,金属离子的氧化还原,缺陷,氧空位,C=O
非自由基1O2石墨化,掺杂的杂原子,吡啶N,石墨N,氧空位,金属离子的氧化还原过程,C=O,C—OH
表面电子转移石墨化,石墨N,吡啶N,缺陷,氧空位
表1  生物炭/PS体系中自由基和非自由基的活化位点[9]
图1  ZnCl2添加量对NOR去除率的影响
生物炭比表面积/(m2·g-1

介孔孔容/

(cm3·g-1

微孔孔容/

(cm3·g-1

孔径/

nm

YQB175.580.090.082.16
YQZn440.460.230.172.03
表2  YQB和YQZn的表面性质
图2  生物炭的氮气吸附-解吸曲线和孔径分布
图3  YQB和YQZn的扫描电镜图和YQZn的EDS能谱
图4  YQB和YQZn的XRD图谱
图5  YQB、YQZn的降解效果和动力学分析结果
图6  反应条件对YQZn催化PDS降解NOR的影响
催化剂生物炭

生物质添加量/

(g·L-1

污染物初始浓度/

(mg·L-1

时间/min去除率/%参考文献
CBC玉米秸秆0.3106065.4733
CoFe2O4@BC杨树0.3106092.7034
BC@nZVI/Ni高粱秸秆0.3106093.4035
Fe@N doped BC玉米秸秆0.3106094.864
YQZn羊栖菜0.3106095.09
表3  不同生物炭催化剂降解效率对比
图7  自由基淬灭实验
图8  GB、GM和YQZn的催化效率对比
图9  GB的重复利用性
1 LI S N, ZHANG C F, LI F X, et al. Technologies towards antibiotic resistance genes (ARGs) removal from aquatic environment: A critical review[J]. Journal of Hazardous Materials, 2021, 411: 125148. DOI:10.1016/j.jhazmat.2021.125148
doi: 10.1016/j.jhazmat.2021.125148
2 MÉDICE R V, AFONSO R J DE C F, ALMEIDA M L B, et al. Preliminary assessment of antimicrobial activity and acute toxicity of norfloxacin chlorination by-product mixture[J]. Environmental Science and Pollution Research, 2021, 28(4): 3828-3836. DOI:10.1007/s11356-020-09748-3
doi: 10.1007/s11356-020-09748-3
3 ZHOU Y Y, XIANG Y J, HE Y Z, et al. Applications and factors influencing of the persulfate-based advanced oxidation processes for the remediation of groundwater and soil contaminated with organic compounds[J]. Journal of Hazardous Materials, 2018, 359: 396-407. DOI:10.1016/j.jhazmat.2018.07.083
doi: 10.1016/j.jhazmat.2018.07.083
4 席慕凡. 铁氮共掺杂生物炭活化过硫酸盐降解诺氟沙星的研究[D]. 合肥: 合肥工业大学, 2021. DOI:10.27101/d.cnki.ghfgu.2021.000997
XI M F. Enhanced Norfloxacin Degradation by Iron and Nitrogen Co-Doped Biochar via Persulfate Activation[D]. Hefei: Hefei University of Technology, 2021. DOI:10.27101/d.cnki.ghfgu.2021.000997
doi: 10.27101/d.cnki.ghfgu.2021.000997
5 ZHAO L, HOU H, FUJII A, et al. Degradation of 1,4-dioxane in water with heat- and Fe2+-activated persulfate oxidation[J]. Environmental Science and Pollution Research, 2014, 21(12): 7457-7465. DOI:10.1007/s11356-014-2668-3
doi: 10.1007/s11356-014-2668-3
6 ZHANG B T, ZHANG Y, TENG Y G, et al. Sulfate radical and its application in decontamination technologies[J]. Critical Reviews in Environmental Science and Technology, 2015, 45(16): 1756-1800. DOI:10.1080/10643389.2014.970681
doi: 10.1080/10643389.2014.970681
7 CUI M S, CUI K P, LIU X L, et al. Synergistic effect of mesoporous graphitic carbon nitride and peroxydisulfate in visible light-induced degradation of atenolol: A combined experimental and theoretical study[J]. Chemical Engineering Journal, 2021, 412: 127979. DOI:10.1016/j.cej.2020.127979
doi: 10.1016/j.cej.2020.127979
8 LI M X, LI P, ZHOU Q, et al. A mini review on persulfate activation by sustainable biochar for the removal of antibiotics[J]. Materials, 2022, 15(17): 5832. DOI:10.3390/ma15175832
doi: 10.3390/ma15175832
9 ZHAO Y L, YUAN X Z, LI X D, et al. Burgeoning prospects of biochar and its composite in persulfate-advanced oxidation process[J]. Journal of Hazardous Materials, 2021, 409: 124893. DOI:10. 1016/j.jhazmat.2020.124893
doi: 10. 1016/j.jhazmat.2020.124893
10 KOHANTORABI M, MOUSSAVI G, GIANNAKIS S. A review of the innovations in metal- and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical vs. non-radical degradation pathways of organic contaminants[J]. Chemical Engineering Journal, 2021, 411: 127957. DOI:10.1016/j.cej.2020.127957
doi: 10.1016/j.cej.2020.127957
11 LEE J, VON GUNTEN U, KIM J H. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks[J]. Environmental Science & Technology, 2020, 54(6): 3064-3081. DOI:10.1021/acs.est.9b07082
doi: 10.1021/acs.est.9b07082
12 叶淑静. 生物炭基催化剂介导电子转移促进高级氧化去除水中污染物的作用研究[D]. 长沙: 湖南大学, 2021. DOI:10.27135/d.cnki.ghudu.2021.002634
YE S J. The Electron Mediating Role of Biochar-Based Catalysts to Promote the Advanced Oxidation Process on Pollutant Removal from Aqueous Solution[D]. Changsha: Hunan University, 2016. DOI:10.27135/d.cnki.ghudu.2021.002634
doi: 10.27135/d.cnki.ghudu.2021.002634
13 王昀, 贲腾. 海藻基微孔碳材料的储甲烷性能[J]. 高等学校化学学报, 2018, 10(39): 2143-2153. DOI:10.7503/cjcu20180224
WANG Y, BEN T. Methane storage performance of self-activated seaweed-based carbon materials[J] Chemical Journal of Chinese University, 2018, 10(39): 2143-2153. DOI:10.7503/cjcu20180224
doi: 10.7503/cjcu20180224
14 张晓梅, 苏红, 毕诗杰, 等. 羊栖菜粉对水溶液中Cu2+的吸附效果[J]. 核农学报, 2019, 33(5): 944-953. DOI:10.11869/j.issn.100-8551.2019.05.0944
ZHANG X M, SU H, BI S J, et al. The adsorption of aquatic copper(Ⅱ) by sargassum fusiforme powder[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(5): 944-953. DOI:10.11869/j.issn.100-8551.2019. 05.0944
doi: 10.11869/j.issn.100-8551.2019. 05.0944
15 NGUYEN T B, TRUONG Q M, CHEN C W, et al. Mesoporous and adsorption behavior of algal biochar prepared via sequential hydrothermal carbonization and ZnCl2 activation[J]. Bioresource Technology, 2022, 346: 126351. DOI:10.1016/j.biortech.2021.126351
doi: 10.1016/j.biortech.2021.126351
16 LI F Y, ZIMMERMAN A R, HU X, et al. One-pot synthesis and characterization of engineered hydrochar by hydrothermal carbonization of biomass with ZnCl2 [J]. Chemosphere, 2020, 254: 126866. DOI:10.1016/j.chemosphere.2020.126866
doi: 10.1016/j.chemosphere.2020.126866
17 孙晨. 改性生物炭对于水中重金属与有机污染物去除的性能与机理[D].杭州: 浙江大学, 2021. DOI:10.27461/d.cnki.gzjdx.2021.000433
SUN C. Modified Biochars for Heavy Metal and Organic Pollutant Removal: Performance and Mechanism[D]. Hangzhou: Zhejiang University, 2021. DOI:10.27461/d.cnki.gzjdx.2021.000433
doi: 10.27461/d.cnki.gzjdx.2021.000433
18 XU R Y, LI M, ZHANG Q. Collaborative optimization for the performance of ZnO/biochar composites on persulfate activation through plant enrichment-pyrolysis method[J]. Chemical Engineering Journal, 2022, 429: 132294. DOI:10.1016/j.cej.2021.132294
doi: 10.1016/j.cej.2021.132294
19 YANG S B, SONF G L, NA Y J, et al. Alkali metal transformation and ash deposition performance of high alkali content Zhundong coal and its gasification fly ash under circulating fluidized bed combustion[J]. Applied Thermal Engineering, 2018, 141: 29-41. DOI:10.1016/J.APPLTHERMALENG.2018.05.113
doi: 10.1016/J.APPLTHERMALENG.2018.05.113
20 LI X Y, BAI C Y, QIAO Y J, et al. Preparation, properties and applications of fly ash-based porous geopolymers: A review[J]. Journal of Cleaner Production, 2022, 359: 132043. DOI:10.1016/j.jclepro.2022.132043
doi: 10.1016/j.jclepro.2022.132043
21 YATSENKO E A, GOLTSMAN B M, TROFIMOV S V, et al. Influence of various coal energy wastes and foaming agents on foamed geopolymer materials' synthesis[J]. Materials, 2022, 16(1): 264. DOI:10.3390/ma16010264
doi: 10.3390/ma16010264
22 PICCOLO F, ANDREOLA F, BARBIERI L, et al. Synthesis and characterization of biochar-based geopolymer materials[J]. Applied Sciences, 2021, 11(22): 10945. DOI:10.3390/app112210945
doi: 10.3390/app112210945
23 LUUKKONEN T, VON GUNTEN U. Oxidation of organic micropollutant surrogate functional groups with peracetic acid activated by aqueous Co(Ⅱ), Cu(Ⅱ), or Ag(Ⅰ) and geopolymer-supported Co(Ⅱ)[J]. Water Research, 2022, 223: 118984. DOI:10.1016/j.watres. 2022.118984
doi: 10.1016/j.watres. 2022.118984
24 HUANG J Q, WANG M Q, LUO S S, et al. In situ preparation of highly graphitized N-doped biochar geopolymer composites for efficient catalytic degradation of tetracycline in water by H2O2 [J]. Environmental Research, 2023, 219: 115166. DOI:10.1016/j.envres.2022.115166
doi: 10.1016/j.envres.2022.115166
25 ZHANG X R, ZHOU X X, MOGHADDAMO T B, et al. Synergistic effects of iron (Fe) and biochar on light-weight geopolymers when used in wastewater treatment applications[J]. Journal of Cleaner Production, 2021, 322(4): 129033. DOI:10.1016/j.jclepro.2021.129033
doi: 10.1016/j.jclepro.2021.129033
26 FANG G D, LIU C, GAO J, et al. Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation[J]. Environmental Science & Technology, 2015, 49(9): 5645-5653. DOI:10.1021/es5061512
doi: 10.1021/es5061512
27 沈天瑶. 改性生物炭吸附4-氯酚及微波活化PDS处理吸附剂效能研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. DOI:10.27061/d.cnki.ghgdu.2020.001275
SHEN T Y. Research on Adsorption of 4-Chlorophenol by Modified Biochar and Treatment Efficiency of Adsorbent by Microwave Activating PDS[D]. Harbin: Harbin Institute of Technology, 2020. DOI:10.27061/d.cnki.ghgdu.2020.001275
doi: 10.27061/d.cnki.ghgdu.2020.001275
28 BI L, PAN G. From harmful microcystis blooms to multi-functional core-double-shell microsphere bio-hydrochar materials[J]. Scientific Reports, 2017, 7(1): 15477. DOI:10.1038/s41598-017-15696-9
doi: 10.1038/s41598-017-15696-9
29 WANG H G, LOU X X, HU Q, et al. Adsorption of antibiotics from water by using Chinese herbal medicine residues derived biochar: Preparation and properties studies[J]. Journal of Molecular Liquids, 2021, 325: 114967. DOI:10.1016/j.molliq.2020. 114967
doi: 10.1016/j.molliq.2020. 114967
30 WANG C, HANSEN H C B, ANDERSEN M L, et al. Fast peroxydisulfate oxidation of the antibiotic norfloxacin catalyzed by cyanobacterial biochar[J]. Journal of Hazardous Materials, 2022, 439: 129655. DOI:10.1016/j.jhazmat.2022.129655
doi: 10.1016/j.jhazmat.2022.129655
31 WANG Q J, ZHANG Z, XU G R, et al. Magnetic porous biochar with nanostructure surface derived from penicillin fermentation dregs pyrolysis with K2FeO4 activation: Characterization and application in penicillin adsorption[J]. Bioresource Technology, 2021, 327: 124818. DOI:10.1016/j.biortech.2021. 124818
doi: 10.1016/j.biortech.2021. 124818
32 OLLER I, MALATO S, SÁNCHEZ-PÉREZ J A. Combination of advanced oxidation processes and biological treatments for wastewater decontamination:A review[J]. Science of The Total Environment, 2011, 409(20): 4141-4166. DOI:10.1016/j.scitotenv.2010. 08.061
doi: 10.1016/j.scitotenv.2010. 08.061
33 WANG B, LI Y N, WANG L. Metal-free activation of persulfates by corn stalk biochar for the degradation of antibiotic norfloxacin: Activation factors and degradation mechanism[J]. Chemosphere, 2019, 237: 124454. DOI:10.1016/j.chemosphere.2019. 124454
doi: 10.1016/j.chemosphere.2019. 124454
34 张吉宇. 铁基杨树生物炭复合材料催化降解新兴有机污染物的研究[D]. 济南: 济南大学, 2022. DOI:10.27166/d.cnki.gsdcc.2022.000615
ZHANG J Y. Catalytic Degradation of Emerging Organic Pollutants by Iron-Based Poplar Biochar Composites[D]. Jinan: University of Jinan, 2022. DOI:10.27166/d.cnki.gsdcc.2022.000615
doi: 10.27166/d.cnki.gsdcc.2022.000615
35 梁宇坤. 生物炭负载纳米零价铁镍激活过硫酸盐降解诺氟沙星废水[D]. 太原: 太原理工大学, 2019.
LIANG Y K. Degradation of Norfloxacin in Water Using Persulfate Activated by Reduced Biochar- Supported Nano Zero Valent Iron/Nickel[D]. Taiyuan: Taiyuan University of Technology, 2019.
[1] 蔡靖,刘思懿,吴媛媛,郑紫凌,王如意,李强标. 同步脱氮除硫燃料电池的电化学特性研究[J]. 浙江大学学报(理学版), 2022, 49(1): 105-111.