Please wait a minute...
浙江大学学报(理学版)  2022, Vol. 49 Issue (1): 105-111    DOI: 10.3785/j.issn.1008-9497.2022.01.014
环境科学     
同步脱氮除硫燃料电池的电化学特性研究
蔡靖(),刘思懿,吴媛媛,郑紫凌,王如意,李强标
浙江工商大学 环境科学与工程学院,浙江 杭州
Electrochemical characteristics of microbial fuel cells treating nitrate and sulfide simultaneously
Jing CAI(),Siyi LIU,Yuanyuan WU,Ziling ZHENG,Ruyi WANG,Qiangbiao LI
College of Environmental Science and Engineering,Zhejiang Gongshang University,Hangzhou 310012,China
 全文: PDF(1313 KB)   HTML( 141 )
摘要:

同步脱氮除硫工艺以硝态氮作为电子受体,硫化物作为电子供体,通过以废治废,去除氮硫污染物。本文构建了双室型微生物燃料电池(microbial fuel cell,MFC),将同步脱氮除硫工艺与MFC相结合,在处理废水的同时生产电能。与化学对照组相比,该同步脱氮除硫MFC具有高基质去除性能和产电性能。当进水硝态氮和硫化物的浓度分别为95.54和540 mg·L-1,反应时间为20 h时,硝态氮和硫化物的去除率分别高达96.50%和99.64%;最大电流密度达457.20 mA·m-2,稳定电流密度为30.33 mA·m-2。通过循环伏安法、极化曲线法和电化学阻抗分析,探究了同步脱氮除硫MFC的电化学特性。结果表明,在同步脱氮除硫MFC电极上,同步发生了脱氮除硫反应,该MFC最大功率密度为75.70 mW·m-3,内阻约为2 474 Ω,其对同步脱氮除硫MFC电化学性能具有制约作用。

关键词: 同步脱氮除硫微生物燃料电池电化学特性循环伏安法电化学阻抗谱    
Abstract:

In the process of simultaneous nitrate and sulfide removal, nitrate is used as electron acceptor along with sulfide as electron donor, which can realize controlling waste by waste, and remove pollutants containing nitrogen and sulfur at the same time. This paper presents an approach to construct dual-chamber microbial fuel cell (MFC), combining the process of simultaneous nitrate and sulfide removal, hance attaining wastewater treatment and power generation concurrently. Compared with the chemical control experiment, the MFC treating sulfide and nitrate simultaneously displays good performance of substrate removal and electricity production. When the influent concentration of nitrate and sulfide are 95.54 and 540 mg·L-1, the removal percentages of nitrate and sulfide reach 96.50% and 99.64%, respectively, with the reaction time of 20 h. The maximum current density is as high as 457.20 mA·m-2, while the stable current density is 30.33 mA-1·m-2. The electrochemical characteristics of the MFC are also evaluated by polarization curve, cyclic voltammetry and electrochemical impedance analysis. The results show that there is a simultaneous sulfide and nitrate removal reaction occurred on the electrode of the MFC. The maximum power density of the MFC is up to 75.70 mW·m-3, and its internal resistance is about 2 474 Ω, the diffusion internal resistance is the electrochemical performance-limiting factor of the MFC.

Key words: simultaneous sulfide and nitrate removal    microbial fuel cell    electrochemical characteristics    cyclic voltammetry    electrochemical impedance spectroscopy
收稿日期: 2020-09-19 出版日期: 2022-01-18
CLC:  X 703.1  
基金资助: 国家自然科学基金青年科学基金项目(51808494);浙江省自然科学基金资助项目(LY18E080007);浙江省公益技术研究计划项目(LGF19E080003)
作者简介: 蔡靖(1984—),ORCID:https://orcid.org/0000-0001-7132-377X,女,博士,副教授,主要从事废水生物处理及资源化研究,E-mail:caijing@zjgsu.edu.cn.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
蔡靖
刘思懿
吴媛媛
郑紫凌
王如意
李强标

引用本文:

蔡靖,刘思懿,吴媛媛,郑紫凌,王如意,李强标. 同步脱氮除硫燃料电池的电化学特性研究[J]. 浙江大学学报(理学版), 2022, 49(1): 105-111.

Jing CAI,Siyi LIU,Yuanyuan WU,Ziling ZHENG,Ruyi WANG,Qiangbiao LI. Electrochemical characteristics of microbial fuel cells treating nitrate and sulfide simultaneously. Journal of Zhejiang University (Science Edition), 2022, 49(1): 105-111.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2022.01.014        https://www.zjujournals.com/sci/CN/Y2022/V49/I1/105

图1  同步脱氮除硫MFCs的基质去除情况数值表示出水硫素(或氮素)占进水硫化物(或硝酸盐)的百分比。
图2  同步脱氮除硫MFCs的产电情况
图3  同步脱氮除硫MFC2的循环伏安曲线
图4  同步脱氮除硫MFC2的极化曲线
图5  同步脱氮除硫MFC2的Nyquist曲线
图6  等效电路示意
1 袁建华, 赵天涛, 彭绪亚, 等. 极端条件下异养硝化-好氧反硝化菌脱氮的研究进展[J]. 生物工程学报, 2019, 35(6): 942-955. DOI:10.13345/j.cjb.180427
YUAN J H, ZHAO T T, PENG X Y, et al. Advances in heterotrophic nitrification-aerobic denitrifying bacteria for nitrogen removal under extreme conditions[J]. Chinese Journal of Biotechnology, 2019, 35(6): 942-955. DOI:10.13345/j.cjb.180427
doi: 10.13345/j.cjb.180427
2 周成金. 生物倍增工艺处理低碳氮比城市污水脱氮效能的研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
ZHOU C J. Nitrogen Removal Efficiency of Bio-doubling Process for Treating Municipal Wastewater with Low Carbon to Nitrogen Ratio[D]. Harbin: Harbin Institute of Technology, 2015.
3 DENG D Y, LIN L S. Continuous sulfidogenic wastewater treatment with iron sulfide sludge oxidation and recycle[J]. Water Research, 2017, 114: 210-217. DOI:10.1016/j.watres.2017.02.048
doi: 10.1016/j.watres.2017.02.048
4 JIN R C, YANG G F, ZHANG Q Q, et al. The effect of sulfide inhibition on the ANAMMOX process[J]. Water Research, 2013, 47(3): 1459-1469. DOI:10.1016/j.watres.2012.12.018
doi: 10.1016/j.watres.2012.12.018
5 SHOW K Y, LEE D J, PAN X L. Simultaneous biological removal of nitrogen-sulfur-carbon: Recent advances and challenges[J]. Biotechnology Advances, 2013, 31(4):409-420. DOI:10.1016/j.biotechadv.2012.12.006
doi: 10.1016/j.biotechadv.2012.12.006
6 蔡靖. 同步厌氧脱氮除硫工艺及微生物学特性的研究[D]. 杭州: 浙江大学, 2010.
CAI J. Process Performance and Microbial Property of Simultaneous Anaerobic Sulfide and Nitrate Removal[D]. Hangzhou: Zhejiang University, 2010.
7 LIN S, MACKEY H R, HAO T W, et al. Biological sulfur oxidation in wastewater treatment: A review of emerging opportunities[J]. Water Research, 2018(143): 399-415. DOI:10.1016/j.watres.2018.06.051.
doi: 10.1016/j.watres.2018.06.051
8 洛根. 微生物燃料电池[M].冯玉杰,王鑫,等译.北京: 化学工业出版社, 2009. doi:10.21236/ada574405
LOGAN B E. Microbial Fuel Cells[M]. Translated by FENG Y J,WANG X,et al. Beijing: Chemical Industry Press, 2009. doi:10.21236/ada574405
doi: 10.21236/ada574405
9 CAI J, ZHENG P. Simultaneous anaerobic sulfide and nitrate removal in microbial fuel cell[J]. Bioresource Technology, 2013, 128:760-764. DOI:10.1016/j.biorech.2012.08.046.
doi: 10.1016/j.biorech.2012.08.046
10 CAI J, ZHENG P, ZHANG J Q, et al. Simultaneous anaerobic sulfide and nitrate removal coupled with electricity generation in microbial fuel cell[J]. Bioresource Technology, 2013, 129: 224-228. DOI:10.1016/j.biortech.2012.11.008
doi: 10.1016/j.biortech.2012.11.008
11 CAI J, ZHENG P, QAISAR M, et al. Elemental sulfur recovery of biological sulfide removal process from wastewater: A review[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(21): 2079-2099. DOI:10.1080/10643389.2017. 1394154
doi: 10.1080/10643389.2017. 1394154
12 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. doi:10.1061/9780784406250.in
State Environmental Protection Administration of China. Method of Water and Wastewater [M]. 4th ed. Beijing: China Environmental Science Press, 2002. doi:10.1061/9780784406250.in
doi: 10.1061/9780784406250.in
13 LI F, PENG X, LIU Y B, et al. A chloride-radical-mediated electrochemical filtration system for rapid and effective transformation of ammonia to nitrogen[J]. Chemosphere, 2019, 229: 383-391. DOI:10.1016/j.chemosphere.2019.04.180
doi: 10.1016/j.chemosphere.2019.04.180
14 PIKAAR I, ROZENDAL R A, YUAN Z G, et al. Electrochemical sulfide oxidation from domestic wastewater using mixed metal-coated titanium electrodes[J]. Water Research, 2011, 45(17): 5381-5388. DOI:10.1016/j.watres.2011.07.033
doi: 10.1016/j.watres.2011.07.033
15 魏炎,张少辉,赵丽,等.反硝化脱硫微生物燃料电池的可行性研究[J].环境科学学报,2016,36(8): 2832-2837. DOI:10.13671/j.hjkxxb.2016.0063
WEI Y, ZHANG S H, ZHAO L, et al. Feasibility of denitrifying and sulfide-removal microbial fuel cell[J]. Acta Scientiae Circumstantiae, 2016, 36(8): 2832-2837. DOI:10.13671/j.hjkxxb.2016.0063
doi: 10.13671/j.hjkxxb.2016.0063
16 LEE C Y, HO K L, LEE D J, et al. Electricity harvest from nitrate/sulfide-containing wastewaters using microbial fuel cell with autotrophic denitrifier, Pseudomonas sp. C27[J]. International Journal of Hydrogen Energy, 2012, 37(20): 15827-15832. DOI:10.1016/j.ijhydene.2012.01.092
doi: 10.1016/j.ijhydene.2012.01.092
17 SUN M, MU Z X, CHEN Y P, et al. Microbe-assisted sulfide oxidation in the anode of a microbial fuel cell[J]. Environmental Science & Technology, 2009, 43(9): 3372-3377. DOI:10.1021/es802809m
doi: 10.1021/es802809m
18 ZHANG B G, ZHAO H Z, SHI C H, et al. Simultaneous removal of sulfide and organics with vanadium(V) reduction in microbial fuel cells[J]. Journal of Chemical Technology & Biotechnology, 2009, 84(12): 1780-1786. DOI:10.1002/jctb.2244
doi: 10.1002/jctb.2244
19 RABAEY K, BOON N, SICILIANO S D, et al. Biofuel cells select for microbial consortia that self-mediate electron transfer[J]. Applied and Environmental Microbiology, 2004, 70(9): 5373-5382. DOI:10.1128/aem.70.9.5373-5382.2004
doi: 10.1128/aem.70.9.5373-5382.2004
20 YIN D, LIU Y Y, SONG P F, et al. In situ growth of copper/reduced graphene oxide on graphite surfaces for the electrocatalytic reduction of nitrate[J]. Electrochimica Acta, 2019, 324: 134846. DOI:10.1016/j.electacta.2019.134846
doi: 10.1016/j.electacta.2019.134846
21 龚园园. 微生物电化学系统处理含硫有机废水及硫回收技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2012. doi:10.7666/d.D238839
GONG Y Y. The Technology of Treatment of Sulfur-containing Organic Wastewater and Recovery of Sulfur Using Biochemical System[D]. Harbin: Harbin Institute of Technology, 2012. doi:10.7666/d.D238839
doi: 10.7666/d.D238839
22 刘智敏. 微生物燃料电池电化学性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2008.
LIU Z M. Study on Electrochemical Performance of Microbial Fuel Cell[D]. Harbin: Harbin Institute of Technology, 2008.
23 梁鹏, 范明志, 曹效鑫, 等. 微生物燃料电池表观内阻的构成和测量[J]. 环境科学, 2007, 28(8): 1894-1898. DOI:10.3321/j.issn:0250-3301.2007. 08.043
LIANG P, FAN M Z, CAO X X, et al. Composition and measurement of the apparent internal resistance in microbial fuel cell[J]. Environmental Science, 2007, 28(8): 1894-1898. DOI:10.3321/j.issn:0250-3301. 2007.08.043
doi: 10.3321/j.issn:0250-3301. 2007.08.043
24 周昱宏. 微生物燃料电池处理含氮废水的研究[D]. 杭州: 浙江大学, 2018. doi:10.29252/jafm.12.03.29207
ZHOU Y H. Study on the Nitrogen-containing Wastewater Treatment by Microbial Fuel Cell[D]. Hangzhou: Zhejiang University, 2018. doi:10.29252/jafm.12.03.29207
doi: 10.29252/jafm.12.03.29207
25 张建民, 魏佳齐, 崔心水, 等. 双阴极MFC启动过程中的电化学特性[J]. 环境工程学报, 2017, 11(12): 6252-6258. DOI:10.12030/j.cjee.201705059
ZHANG J M, WEI J Q, CUI X S, et al. Electrochemical characterization of dual cathode MFC during start-up phase[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6252-6258. DOI:10.12030/j.cjee.201705059
doi: 10.12030/j.cjee.201705059
26 殷瑶, 黄光团, 陈建文, 等. 微生物燃料电池启动过程的电化学行为[J]. 华东理工大学学报(自然科学版), 2014, 40(2): 190-195. DOI:10.3969/j.issn. 1006-3080.2014.02.010
YIN Y, HUANG G T, CHEN J W, et al. Electrochemical behavior of microbial fuel cell in a start-up phase[J]. Journal of East China University of Science and Technology(Natural Science Edition), 2014, 40(2): 190-195. DOI:10.3969/j.issn.1006-3080. 2014.02.010
doi: 10.3969/j.issn.1006-3080. 2014.02.010
[1] 章静, 赵丝蒙, 周昱宏, 史惠祥. 聚中性红修饰电极对微生物燃料电池(MFC)脱氮产电性能的影响[J]. 浙江大学学报(理学版), 2019, 46(5): 589-599.