Please wait a minute...
浙江大学学报(理学版)  2024, Vol. 51 Issue (3): 355-369    DOI: 10.3785/j.issn.1008-9497.2024.03.014
环境科学     
生物炭负载纳米零价铁催化降解亚甲基蓝性能研究及机理分析
闫敏琪1,韩玉1,2,杨淳轲1,史惠祥1()
1.浙江大学 环境与资源学院,浙江 杭州 310058
2.生态环境部南京环境科学研究所,江苏 南京 210042
Study on catalytic degradation of methylene blue by biochar supported nano zero-valent iron and its mechanism analysis
Minqi YAN1,Yu HAN1,2,Chunke YANG1,Huixiang SHI1()
1.College of Environmental & Resource Sciences,Zhejiang University,Hangzhou 310058,China
2.Nanjing Institute of Environmental Sciences,Ministry of Ecology and Environment,Nanjing 210042,China
 全文: PDF(6344 KB)   HTML( 1 )
摘要:

为提升纳米零价铁在类芬顿反应体系中的催化能力,减少团聚现象,采用液相还原法制备了生物炭负载纳米零价铁材料(nZVI@BC)。通过表征、亚甲基蓝降解实验,探究材料性能、降解最佳条件及作用机理。结果表明,纳米零价铁(nZVI)均匀分布于生物炭表面,且材料纯度较高、稳定性较好。在降解实验中,降解100 mg·L-1亚甲基蓝溶液的最佳反应条件为25 ℃、初始pH=3、nZVI@BC投加量30 mg·L-1、H2O2投加浓度4 mmol·L-1,10 min内几乎完全降解。在降解过程中,·OH起主要作用,发色官能团首先断裂,随后芳环结构被破坏,最终彻底降解。且nZVI@BC循环使用性能较好,3次循环后亚甲基蓝去除率仍达85%以上。在印染废水处理实验中,nZVI@BC处理效果良好,当H2O2投加浓度为0.9 mmol·L-1、nZVI@BC投加量为60 mg·L-1、pH≤4.5时,出水化学需氧量(CODcr)可降至50 mg·L-1以下,达到回用水标准。

关键词: 纳米零价铁类芬顿反应亚甲基蓝生物炭负载纳米零价铁    
Abstract:

To improve the catalytic ability of nano zero-valent iron in a Fenton like reaction system and reduce the agglomeration of nano zero-valent iron materials, the liquid phase reduction method was used to prepare biochar loaded nano zero valent iron materials (nZVI@BC). The material was characterized and the methylene blue was degraded to explore the material properties, the optimal degradation conditions and the action mechanism. The results showed that nano zero-valent iron had been successfully and evenly distributed on the surface of biochar. The prepared material was of high purity and good stability. In the degradation optimization experiment, the optimal reaction condition for degradation of 100 mg·L-1 methylene blue solution was 25 ℃, the initial pH=3, the dosage of nZVI@BC is 30 mg·L-1 and the dosage of H2O2 is 4 mmol·L-1. Under this condition, methylene blue solution can be almost completely degraded in 10 minutes. It had found that hydroxyl radicals played a major role in the degradation process. The chromogenic functional groups first broke, followed by the destruction of the aromatic ring structure, and ultimately completed degradation. And the material had a good recycling performance. After three cycles, the removal rate of methylene blue was still above 85%. In actual printing and dyeing wastewater treatment experiments, nZVI@BC had a good wastewater treatment effect. When the dosage of H2O2 was 0.9 mmol·L-1, the dosage of nZVI@BC was 60 mg·L-1 and the pH≤ 4.5, the CODcr decreased to below 50 mg·L-1, up to the standards for reuse water.

Key words: nano zero-valent iron    Fenton like reaction    methylene blue    biochar loaded nano zero valent iron
收稿日期: 2023-04-03 出版日期: 2024-05-07
CLC:  X 791  
基金资助: 浙江省“领雁”研发攻关计划项目(2023C03149)
通讯作者: 史惠祥     E-mail: shhx188@163.com
作者简介: 闫敏琪(1999—),ORCID:https://orcid.org/0009-0003-2616-9867,女,硕士研究生,主要从事水污染控制与治理研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
闫敏琪
韩玉
杨淳轲
史惠祥

引用本文:

闫敏琪,韩玉,杨淳轲,史惠祥. 生物炭负载纳米零价铁催化降解亚甲基蓝性能研究及机理分析[J]. 浙江大学学报(理学版), 2024, 51(3): 355-369.

Minqi YAN,Yu HAN,Chunke YANG,Huixiang SHI. Study on catalytic degradation of methylene blue by biochar supported nano zero-valent iron and its mechanism analysis. Journal of Zhejiang University (Science Edition), 2024, 51(3): 355-369.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2024.03.014        https://www.zjujournals.com/sci/CN/Y2024/V51/I3/355

试剂名称(分子式)规格生产厂家
七水合硫酸亚铁(FeSO4·7H2O)500 g/瓶,AR国药集团化学试剂有限公司
硼氢化钠(NaBH4100 g/瓶,AR国药集团化学试剂有限公司
乙醇(C2H6O)500 mL/瓶,AR阿拉丁试剂(上海)有限公司
亚甲基蓝(C16H18CIN3S·3H2O)50 g/瓶,生物技术级上海麦克林生化科技有限公司
30%的过氧化氢(H2O2500 mL/瓶,AR国药集团化学试剂有限公司
叔丁醇(C4H10O)500 mL/瓶,GR上海麦克林生化科技有限公司
氢氧化钠(NaOH)500 g/瓶,AR国药集团化学试剂有限公司
硫酸(H2SO4500 mL/瓶,AR国药集团化学试剂有限公司
氮气(N2高纯(≥99.999%)杭州今工特种气体有限公司
表1  主要实验试剂
图1  SEM分析结果
图2  nZVI@BC的能谱和EDS-mapping分析结果

BET比表面积/

(m2·g-1

平均孔容/

(cm3·g-1

平均孔径/nm
BC8.10.02820.377
nZVI11.70.12320.507
nZVI@BC18.60.13718.733
表2  催化剂的BET分析
图3  氮气吸附脱附等温线
图4  BC,nZVI和nZVI@BC的XRD谱图
图5  BC和nZVI@BC的红外光谱图
图6  nZVI@BC的磁滞回线
图7  nZVI@BC的投加量对亚甲基蓝降解效果影响
图8  H2O2投加浓度对nZVI@BC降解亚甲基蓝的影响
图9  溶液初始pH值对nZVI@BC降解亚甲基蓝的影响
图10  在最优条件下nZVI@BC降解亚甲基蓝的曲线
图11  自由基捕获实验
图12  nZVI@BC的ESR光谱图
图13  nZVI@BC降解亚甲基蓝反应过程中的紫外-可见全波长扫描图
图14  nZVI@BC的循环使用实验
图15  废水处理工艺流程
日期点位

CODcr/

(mg·L-1

BOD5/

(mg·L-1

B/C

NH3—N/

(mg·L-1

TN/

(mg·L-1

TP/

(mg·L-1

TDS/

(mg·L-1

第1天调节池1 500//13.840.44.44/
集水池9523210.3414.226.10.41/
水解塔6182780.4531.749.40.61/
二沉池120//12.027.90.70/
反渗透8//3.610.90.06146
膜浓缩液185//14.418.30.624 830
第2天调节池1 500//15.925.63.81/
集水池9523430.3615.721.42.00/
水解塔6182260.3722.324.90.95/
二沉池120//10.812.20.27/
反渗透8//2.53.88.00406
膜浓缩液185//14.820.1187.004 010
第3天调节池1 360//15.120.63.43/
集水池8722640.3012.919.30.20/
水解塔4541820.4037.748.90.14/
二沉池151//6.89.20.17/
反渗透10//0.21.50.05187
膜浓缩液230//4.028.20.515 330
表3  各出水点位水质监测结果
图16  不同H2O2投加浓度对CODcr去除的影响
图17  不同nZVI@BC投加量对CODcr去除的影响
图18  不同pH对CODcr去除的影响
1 中华人民共和国生态环境部. 中国环境统计年报2015[M]. 北京: 中国环境出版社, 2016.
Ministry of Environmental Protection of the People's Republic of China. China Environmental Statistics Annual Report 2015[M]. Beijing: China Environment Publishing House, 2016.
2 史振宇. 催化臭氧氧化-BAF深度处理印染废水生化出水研究[D]. 北京: 北京建筑大学, 2020. DOI:10.26943/d.cnki.gbjzc.2020.000288
SHI Z Y. Research on the Combined Catalytic Ozonation-BAF Process for the Advanced Treatment of the Effluent from the Dyeing Wastewater Biochemical Treatment[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2020. DOI:10. 26943/d.cnki.gbjzc.2020.000288
doi: 10. 26943/d.cnki.gbjzc.2020.000288
3 陈银生, 张新胜, 袁渭康. 印染废水处理技术[J]. 化工进展, 2001, 5: 39-42. DOI:10.3321/j.issn:1000-6613.2001.05.010
CHEN Y S, ZHANG X S, YUAN W K, et al. Treatment technology of printing and dyeing wastewater[J]. Chemical Industry and Engineering Progress, 2001, 5: 39-42. DOI:10.3321/j.issn:1000-6613.2001.05.010
doi: 10.3321/j.issn:1000-6613.2001.05.010
4 汝伟, 张建斌, 钱伟杰, 等. MBR-Fenton催化氧化组合工艺深度处理印染废水[J]. 环境工程, 2021, 39(11): 149-153. DOI:10.13205/j.hjgc.202111019
RU W, ZHANG J B, QIAN W J, et al. Application of MBR-Fenton catalytic oxidation combined process in advanced treatment of printing and dyeing wastewater[J]. Environmental Engineering, 2021, 39(11): 149-153. DOI:10.13205/j.hjgc.202111019
doi: 10.13205/j.hjgc.202111019
5 KANG S F, CHANG H M. Coagulation of textile secondary effluents with Fenton's reagent[J]. Water Science & Technology, 1997, 36(12): 215-222. DOI:10.1016/S0273-1223(97)00707-5
doi: 10.1016/S0273-1223(97)00707-5
6 赵阁阁, 孙婧, 张运波, 等. 高级氧化技术处理印染废水的研究进展[J]. 应用化工, 2021, 50(9): 2550-2554. DOI:10.3969/j.issn.1671-3206.2021.09.046
ZHAO G G, SUN J, ZHANG Y B, et al. Research progress of advanced oxidation technology in treatment of printing and dyeing wastewater[J]. Applied Chemical Industry, 2021, 50(9): 2550-2554. DOI:10.3969/j.issn.1671-3206.2021.09.046
doi: 10.3969/j.issn.1671-3206.2021.09.046
7 MAO J, QUAN X, WANG J, et al. Enhanced heterogeneous Fenton-like activity by Cu-doped BiFeO3 perovskite for degradation of organic pollutants[J]. Frontiers of Environmental Science & Engineering, 2018, 12(6): 103-112. DOI:10.1007/s11783-018-1060-9
doi: 10.1007/s11783-018-1060-9
8 GAO P, CHEN X J, HAO M J, et al. Oxygen vacancy enhancing the Fe2O3-CeO2 catalysts in Fenton-like reaction for the sulfamerazine degradation under O2 atmosphere[J]. Chemosphere, 2019, 228(8): 521-527. DOI:10.1016/j.chemosphere.2019.04.125
doi: 10.1016/j.chemosphere.2019.04.125
9 PAN T, CHEN H, GAO X, et al. Engineering efficient artificial nanozyme based on chitosan grafted Fe-doped-carbon dots for bacteria biofilm eradication[J]. Journal of Hazardous Materials, 2022, 435(5): 128996. DOI:10.12030/j.cjee.20150115
doi: 10.12030/j.cjee.20150115
10 ZHENG P, PAN Z, ZHANG J. Synergistic enhancement in catalytic performance of superparamagnetic Fe3O4@Bacilus subtilis as recyclable fenton-like catalyst[J]. Catalysts, 2017, 7(11): 349. DOI:10.3390/catal7110349
doi: 10.3390/catal7110349
11 WEI X S, XIE X M, WANG Y, et al. Shape-dependent Fenton-like catalytic activity of Fe3O4 nanoparticles[J]. Journal of Environmental Engineering, 2020,146(3): 4020005. DOI:10.1061/(ASCE)EE.1943-7870.00016
doi: 10.1061/(ASCE)EE.1943-7870.00016
12 HAN L, XUE S, ZHAO S C, et al. Biochar supported nanoscale iron particles for the efficient removal of methyl orange dye in aqueous solutions[J]. PLoS One, 2015, 10(7): e0132067. DOI:10.1371/journal.pone.0132067
doi: 10.1371/journal.pone.0132067
13 薛嵩, 钱林波, 晏井春,等. 生物炭携载纳米零价铁对溶液中Cr(Ⅵ)的去除[J]. 环境工程学报, 2016, 10(6): 2895-2901. DOI:10.12030/j.cjee.20150115
XUE S, QIAN L B, YAN J C, et al. Removal of Cr(Ⅵ) from aqueous using biochar carried nanoscale zero-valent iron[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 2895-2901. DOI:10.12030/j.cjee.20150115
doi: 10.12030/j.cjee.20150115
14 吴鸿伟, 冯启言, 杨虹, 等. 改性生物炭负载纳米零价铁去除水体中头孢噻肟[J]. 环境科学学报, 2017, 37(7): 2691-2698. DOI:10.13671/j.hjkxxb.2017. 0109
WU H W, FENG Q Y, YANG H, et al. Nanoscale zero valent iron stabilized on modified biochar to remove cefotaxime from aqueous solutions[J]. Acta Scientiae Circumstantiae, 2017, 37(7): 2691-2698. DOI:10.13671/j.hjkxxb.2017.0109
doi: 10.13671/j.hjkxxb.2017.0109
15 崔宇娜. 生物炭载体对于纳米零价铁去除水中硝酸盐性能的持久性及强化性研究[D]. 西安: 西北大学, 2020. DOI:10.27405/d.cnki.gxbdu.2020.001219
CUI Y N. Study on the Persistence and Strengthening of Biochar Support for Nano-Zero-Valent Iron on Nitrate Removal in Water[D]. Xi'an: Northwest University, 2020. DOI:10.27405/d.cnki.gxbdu.2020. 001219
doi: 10.27405/d.cnki.gxbdu.2020. 001219
16 张晓, 胡春, 张丽丽, 等. 生物质炭强化FeOOH类芬顿催化性能及其机制[J]. 环境科学学报, 2020, 40(11): 3895-3904. DOI:10.13671/j.hjkxxb.2020. 0205
ZHANG X, HU C, ZHANG L L, et al. Enhanced fenton-like catalytic performance of FeOOH by biochar and its mechanism [J]. Acta Scientiae Circumstantiae, 2020, 40(11): 3895-3904. DOI:10.13671/j.hjkxxb.2020.0205
doi: 10.13671/j.hjkxxb.2020.0205
17 林琳, 万金忠, 李群, 等. 生物炭负载纳米零价铁材料的制备及还原降解性能[J]. 生态与农村环境学报, 2017, 33(7): 660-664. DOI:10.11934/j.issn. 1673-4831.2017.07.011
LIN L, WAN J Z, LI Q, et al. Preparation and reductive degradation properties of biochar loaded with nano zero-valent iron[J]. Journal of Ecology and Rural Environment, 2017, 33(7): 660-664. DOI:10.11934/j.issn.1673-4831.2017.07.011
doi: 10.11934/j.issn.1673-4831.2017.07.011
18 潘伟亮, 谢会敏, 敖良根, 等. 生物炭负载纳米零价铁去除硝酸盐作用的研究[J]. 水处理技术, 2022, 48(6): 72-75. DOI:10.16796/j.cnki.1000-3770.2022.06.015
PAN W L, XIE H M, AO L G, et al. Study on nitrate removal by nano zero-valent iron supported on biochar[J]. Technology of Water Treatment, 2022, 48(6): 72-75. DOI:10.16796/j.cnki.1000-3770. 2022.06.015
doi: 10.16796/j.cnki.1000-3770. 2022.06.015
19 王倩. 二茂铁和铁铁类水滑石催化的非均相Fenton反应机理及其降解亚甲基蓝基础研究[D]. 昆明: 昆明理工大学, 2014.
WANG Q. Mechanisms and Application of Heterogeneous Fenton Systems Catalyzed by Ferrocene and FeFe-LDH in the Treatment of Methylene Blue[D]. Kunming: Kunming University of Science and Technology, 2014.
20 梁爽. 生物炭负载硫化纳米零价铁对四环素的降解研究[D]. 上海: 东华大学, 2021. DOI:10.27012/d.cnki.gdhuu.2021.000889
LIANG S. Degradation of Tetracycline by Sulfide Nano Zero Valent Iron Supported on Biochar[D]. Shanghai: Donghua University, 2021. DOI:10. 27012/d.cnki.gdhuu.2021.000889
doi: 10. 27012/d.cnki.gdhuu.2021.000889
21 AHMAD M, USMAN A R A, RAFIQUE M I, et al. Engineered biochar composites with zeolite, silica, and nano-zerovalent iron for the efficient scavenging of chlortetracycline from aqueous solutions[J]. Environmental Science & Pollution Research International, 2019, 26(15): 15136-15152. DOI:10.1007/s11356-019-04850-7
doi: 10.1007/s11356-019-04850-7
22 HU Y, PENG X, AI Z H, et al. Liquid nitrogen activation of zero-valent iron and its enhanced Cr(VI) removal performance[J]. Environmental Science & Technology, 2019, 53(14): 8333-8341. DOI:10. 1021/acs.est.9b01999
doi: 10. 1021/acs.est.9b01999
23 季雪琴, 吕黎, 陈芬, 等. 秸秆生物炭对有机染料的吸附作用及机制[J]. 环境科学学报, 2016, 36(5): 1648-1654. DOI:10.13671/j.hjkxxb.2015.0651
JI X Q, LYU L, CHEN F, et al. Sorption properties and mechanisms of organic dyes by straw biochar[J]. Acta Scientiae Circumstantiae, 2016, 36(5): 1648-1654. DOI:10.13671/j.hjkxxb.2015.0651
doi: 10.13671/j.hjkxxb.2015.0651
24 索进苗, 赵保卫, 杨茂莺, 等. 铁基类芬顿催化剂的改性及其应用研究进展[J]. 环境科学与技术, 2023, 46(S1): 145-153. DOI:10.19672/j.cnki.1003-6504.2297.21.338
SUO J M, ZHAO B W, YANG M Y, et al. Progress in modification and application of iron-based Fenton catalysts[J]. Environmental Science & Technology, 2023, 46(S1): 145-153. DOI:10.19672/j.cnki.1003-6504.2297.21.338
doi: 10.19672/j.cnki.1003-6504.2297.21.338
25 江淑文, 韦士程, 王婷, 等. 类芬顿催化剂Cu-Co-Fe金属氧化物的制备及其对典型难降解有机物的去除[J]. 环境工程, 2021, 39(11): 77-82. DOI:10.13205/j.hjgc.202111009
JIANG S W, WEI S C, WANG T, et al. Preparation of a Fenton-like Cu-Co-Fe metallic oxide catalyst and its degradation performance on typical refractory organics[J]. Environmental Engineering, 2021, 39(11): 77-82. DOI:10.13205/j.hjgc.202111009
doi: 10.13205/j.hjgc.202111009
26 CHRISTOPHER B. The international union of pure and applied chemistry and its role on the world stage[J]. National Science Review, 2021, 8(5): 11-12. DOI:10.1093/nsr/nwab036
doi: 10.1093/nsr/nwab036
27 郭航言, 何春霞. 四种生物炭的理化性质及其对亚甲基蓝吸附性能研究[J]. 材料开发与应用, 2019, 34(2): 113-119. DOI:10.19515/j.cnki.1003-1545.2019.02.017
GUO H Y, HE C X. Study on physicochemical properties of four biochars and their adsorption to methy-lene blue[J]. Development and Application of Materials, 2019, 34(2): 113-119. DOI:10.19515/j.cnki.1003-1545.2019.02.017
doi: 10.19515/j.cnki.1003-1545.2019.02.017
28 孟繁健, 朱宇恩, 李华, 等. 改性生物炭负载nZVI对土壤Cr(VI)的修复差异研究[J]. 环境科学学报, 2017, 37(12): 4715-4723. DOI:10.13671/j.hjkxxb. 2017.0240
MENG F J, ZHU Y E, LI H, et al. Effects of the remediation of Cr (VI) in soil by nanoscale zero-valent iron (nZVI) with modified biochar[J]. Acta Scientiae Circumstantiae, 2017, 37(12): 4715-4723. DOI:10.13671/j.hjkxxb.2017.0240
doi: 10.13671/j.hjkxxb.2017.0240
29 杨霏, 王红, 颜智勇, 等. 有机改性伊利石负载纳米零价铁类芬顿降解废水中头孢哌酮[J]. 环境工程学报, 2022, 16(3): 906-914. DOI:10.12030/j.cjee. 202111093
YANG F, WANG H, YAN Z Y, et al. Fenton-like degradation of cefoperazone in water by organic modified illite supported nano-zero-valent iron[J]. Chinese Journal of Environmental Engineering, 2022, 16(3): 906-914. DOI:10.12030/j.cjee.202111093
doi: 10.12030/j.cjee.202111093
30 赵居芳, 冯丹, 尚江伟, 等. 白酒废水污泥基生物炭对亚甲基蓝的吸附特性研究[J]. 湖北农业科学, 2022, 61(10): 67-73. DOI:10.14088/j.cnki.issn0439-8114.2022.10.011
ZHAO J F, FENG D, SHANG J W, et al. Adsorption properties of methylene blue by liquor wastewater sludge-based biochar[J]. Hubei Agricultural Sciences, 2022, 61(10): 67-73. DOI:10.14088/j.cnki.issn0439-8114.2022.10.011
doi: 10.14088/j.cnki.issn0439-8114.2022.10.011
31 陈小伍, 方驰华, 刘胜军, 等. 超顺磁性纳米铁粒子标记骨髓基质干细胞及对其分化能力的影响[J]. 中华神经医学杂志, 2006(3): 253-257. DOI:10.3760/cma.j.issn.1671-8925.2006.03.009
CHEN X W, FANG C H, LIU S J, et al. Effect of superparamagnetic iron nanoparticle labeling on bone marrow stem cells' abilities to survive, proliferate and differentiate into hepatocytes[J]. Chinese Journal of Neuromedicine, 2006(3): 253-257. DOI:10.3760/cma.j.issn.1671-8925.2006.03.009
doi: 10.3760/cma.j.issn.1671-8925.2006.03.009
32 许盛彬. 活性炭负载纳米零价铁诱发芬顿反应降解甲基橙的研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. DOI:10.7666/d.D01101121
XU S B. Study of Nanoscale Zero-Valent Iron Impregnated Activated Carbon for Fenton-Mediated Degradation of Methyl Orange[D]. Harbin: Harbin Industrial University, 2015. DOI:10.7666/d.D01101121
doi: 10.7666/d.D01101121
33 欧晓霞, 张凤杰, 王崇, 等. 芬顿氧化法处理水中酸性品红的研究[J]. 环境工程学报, 2010, 4(7): 1453-1456.
OU X X, ZHANG F J, WANG C,et al. Oxidation of acid magenta in aqueous solution by Fenton's reagent[J]. Chinese Journal of Environmental Engineering, 2010, 4(7): 1453-1456.
34 KUANG Y, WANG Q, CHEN Z, et al. Heterogeneous fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles[J]. Journal of Colloid and Interface Science, 2013, 410(22): 67-73. DOI:10. 1016/j.jcis.2013.08.020
doi: 10. 1016/j.jcis.2013.08.020
35 ZHOU L, LI A, MA F, et al. Combining high electron transfer efficiency and oxidation resistance in nZVI with coatings of microbial extracellular polymeric substances to enhance Sb(V) reduction and adsorption[J]. Chemical Engineering Journal, 2020, 395(17): 125168. DOI:10.1016/j.cej.2020.125168
doi: 10.1016/j.cej.2020.125168
36 廖琳, 黄宏星, 叶俊炜, 等. Fe(0)/H2O2协同降解亚甲基蓝的研究[J]. 生态环境学报, 2011, 20(10): 1547-1550. DOI:10.16258/j.cnki.1674-5906.2011.10.029
LIAO L, HUANG H X, YE J W, et al. Degradation of methylene blue by Fe(0)/H2O2 [J]. Ecology and Environmental Sciences, 2011, 20(10): 1547-1550. DOI:10.16258/j.cnki.1674-5906.2011.10.029
doi: 10.16258/j.cnki.1674-5906.2011.10.029
37 ZHANG Y, ZHAO L, YANG Y, et al. Fenton-like oxidation of antibiotic ornidazole using biochar-supported nanoscale zero-valent iron as heterogeneous hydrogen peroxide activator[J]. International Journal of Environmental Research and Public Health, 2020, 17(4): 1324. DOI:10.3390/ijerph17041324
doi: 10.3390/ijerph17041324
38 何玉婷. 赤泥基非均相芬顿体系降解磺胺二甲嘧啶的研究[D]. 武汉: 华中农业大学, 2019. DOI:10. 7666/d.Y3585743
HE Y T. Degradation of Sulfamethazine by Red Mud-based Heterogeneous Fenton System[D]. Wuhan: Huazhong Agricultural University, 2019. DOI:10.7666/d.Y3585743
doi: 10.7666/d.Y3585743
39 DE L J, LE T G. Kinetics and modeling of the Fe(III)/H2O2 system in the presence of sulfate in acidic aqueous solutions[J]. Environmental Science & Technology, 2005, 39(6): 1811-1818. DOI:10. 1021/es0493648
doi: 10. 1021/es0493648
40 宫震, 付田雨, 孙好芬, 等. 高级氧化技术处理印染废水研究进展[J]. 湿法冶金, 2022, 41(4): 283-288. DOI:10.13355/j.cnki.sfyj.2022.04.001
GONG Z, FU T Y, SUN H F, et al. Research progress of advanced oxidation process for treatment of printing and dyeing wastewater[J]. Hydrometallurgy of China, 2022, 41(4): 283-288. DOI:10.13355/j.cnki.sfyj.2022. 04.001
doi: 10.13355/j.cnki.sfyj.2022. 04.001
41 谷俊辉. 印染废水处理工艺研究与进展[J]. 山东工业技术, 2018, 259(5): 27-28. DOI:10.16640/j.cnki.37-1222/t.2018.05.021
GU J H. Research and progress on the treatment process of printing and dyeing wastewater[J]. Journal of Shandong Industrial Technology, 2018, 259(5): 27-28. DOI:10.16640/j.cnki.37-1222/t. 2018.05.021
doi: 10.16640/j.cnki.37-1222/t. 2018.05.021
42 陈斐. 印染废水的Fenton及类Fenton处理技术[J]. 印染, 2016, 42(15): 51-53. doi:10.3321/j.issn.1000-4017.2016.15.013
CHEN F. Dyeing wastewater treatment with homogeneous and heterogeneous Fenton technologies[J]. China Dyeing & Finishing, 2016, 42(15): 51-53. doi:10.3321/j.issn.1000-4017.2016.15.013
doi: 10.3321/j.issn.1000-4017.2016.15.013
43 姚平, 陈丽, 许磊, 等. 均相Fenton法氧化降解处理印染废水的工艺优化[J]. 染整技术, 2018, 40(10): 39-42. DOI:10.3969/j.issn.1005-9350.2018.10.011
YAO P, CHEN L, XIU L, et al. Degradation process optimization of printing and dyeing wastewater by homogeneous-Fenton process[J]. Textile Dyeing and Finishing Journal, 2018, 40(10): 39-42. DOI:10.3969/j.issn.1005-9350.2018.10.011
doi: 10.3969/j.issn.1005-9350.2018.10.011
[1] 韩玉,史成超,陈磊,刘浩然,虞家欣,史惠祥. FeSO4强化活性污泥法除锑技术研究[J]. 浙江大学学报(理学版), 2023, 50(2): 185-194.