Please wait a minute...
浙江大学学报(理学版)  2023, Vol. 50 Issue (2): 185-194    DOI: 10.3785/j.issn.1008-9497.2023.02.008
环境科学     
FeSO4强化活性污泥法除锑技术研究
韩玉1,史成超2,陈磊1,刘浩然1,虞家欣1,史惠祥1,2()
1.浙江大学 环境与资源学院,浙江 杭州 310027
2.嘉兴市环境科学研究中心,浙江 嘉兴 314000
Study on technology and mechanism of antimony removal by FeSO4 enhanced activated sludge method
Yu HAN1,Chengchao SHI2,Lei CHEN1,Haoran LIU1,Jiaxin YU1,Huixiang SHI1,2()
1.Department of Environmental and Resource,Zhejiang University,Hangzhou 310027,China
2.Jiaxing Environmental Science Research Center,Jiaxing 314000,Zhejiang Province,China
 全文: PDF(5868 KB)   HTML( 0 )
摘要:

针对印染废水中难以去除的低浓度锑,采用FeSO4强化活性污泥法,并结合高通量测序、扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)探究其除锑机理。结果表明:(1)FeSO4强化活性污泥法具有较强的除锑性能,当锑初始浓度为250 μg·L-1,pH为8,Fe2+投加量为90 mg·L-1时,Sb(Ⅴ)去除率稳定在60%以上;共存离子对Sb(Ⅴ)去除率有促进或抑制作用。(2)在投加FeSO4的驯化过程中,活性污泥微生物丰度和多样性降低,颗粒更松散、比表面积增大、粒径减小,与锑的接触面积增大,从而提高了除锑效率;Fe2+在生化过程中被原位氧化为α-FeO(OH),与活性污泥表面的大量羧基或氨基团结合,附着在活性污泥表面,实现对锑的吸附。

关键词: 印染废水除锑FeSO4活性污泥法    
Abstract:

In order to effectively remove low-concentration antimony in the printing and dyeing wastewater, this study adapted FeSO4 enhanced activated sludge method, applying high-throughput sequencing, together with scanning electron microscope (SEM), Fourier transform infrared spectrometer (FTIR) and X-ray photoelectron spectroscopy (XPS) to reveal the mechanism of removing antimony. The results showed that: (1) FeSO4 enhanced activated sludge group had strong antimony removal performance, the initial antimony concentration was 250 μg·L-1, pH=8, Fe2+ dosage was 90 mg·L-1, the removal efficiency of Sb (Ⅴ) was stable above 60%. At the same time, the different coexisting ions can promote or inhibit the removal rate of Sb (Ⅴ). (2) During the domestication process of adding FeSO4, the abundance and diversity of activated sludge microorganisms decreased, activated sludge particles became looser, specific surface area increased, particle size decreased, and the contact areas between sludge flocs and antimony in water increased, improving the efficiency of antimony removal. Fe2+ was oxidized to α-FeO(OH) in situ in the biochemical process, and combined with a large number of carboxyl or amino groups on the surface of activated sludge, therefore adhered to the surface of activated sludge to realize the adsorption of antimony pollutants.

Key words: printing and dyeing wastewater    removal of antimony    FeSO4    activated sludge method
收稿日期: 2021-12-21 出版日期: 2023-03-21
CLC:  X 791  
基金资助: 国家水体污染控制与治理科技重大专项(2017ZX07206-002)
通讯作者: 史惠祥     E-mail: huixiang_shi@163.com
作者简介: 韩玉(1996—),ORCID:https://orcid.org/0000-0002-8838-6926,女,硕士研究生,主要从事印染废水工业处理研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
韩玉
史成超
陈磊
刘浩然
虞家欣
史惠祥

引用本文:

韩玉,史成超,陈磊,刘浩然,虞家欣,史惠祥. FeSO4强化活性污泥法除锑技术研究[J]. 浙江大学学报(理学版), 2023, 50(2): 185-194.

Yu HAN,Chengchao SHI,Lei CHEN,Haoran LIU,Jiaxin YU,Huixiang SHI. Study on technology and mechanism of antimony removal by FeSO4 enhanced activated sludge method. Journal of Zhejiang University (Science Edition), 2023, 50(2): 185-194.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2023.02.008        https://www.zjujournals.com/sci/CN/Y2023/V50/I2/185

图1  SBR反应装置示意
图2  FeSO4强化活性污泥组与对照组除锑效果对比
图3  FeSO4投加量对除锑效果的影响
图4  不同阴离子对Sb(Ⅴ)去除率的影响
图5  活性污泥颗粒的累积粒径分布
图6  活性污泥絮体SEM图
图7  污泥絮体C1s的XPS
图8  污泥絮体O1s和Sb3d的XPS
图9  污泥絮体Fe2p的XPS
图10  活性污泥絮体的FTIR图
图11  不同组别细菌门分类水平直方图
图12  不同组别细菌属分类水平直方图
1 中华人民共和国生态环境部. 纺织染整工业水污染物排放标准: [S]. 北京: 中国环境科学出版社, 2015.
Ministry of Environmental Protection. Standard for Pollutant Discharge Textile Dyeing and Finishing Industry [S]. Beijing: China Environmental Science Press, 2015.
2 杨秀贞, 周腾智, 任伯帜. 吸附法处理含锑废水技术进展[J]. 广东化工, 2018, 45(15): 147-148, 152. DOI:10.3969/j.issn.1007-1865.2018.15.065
YANG X Z, ZHOU T Z, REN B Z. Advances in treating antimony-containing wastewater by adsorption[J]. Guangdong Chemical Industry, 2018, 45(15): 147-148, 152. DOI:10.3969/j.issn.1007-1865. 2018.15.065
doi: 10.3969/j.issn.1007-1865. 2018.15.065
3 徐清华, 樊鹏, 董红钰, 等. 吸附法去除水中锑的研究进展综述[J]. 土木与环境工程学报, 2020, 42(6): 143-152. DOI:10.11835/j.issn.2096-6717. 2020.078
XU Q H, FAN P, DONG H Y, et al. A review of the adsorptive removal of antimony from water by various adsorbents[J]. Chinese Journal of Civil and Environmental Engineering, 2020, 42(6): 143-152. DOI:10.11835/j.issn.2096-6717.2020.078
doi: 10.11835/j.issn.2096-6717.2020.078
4 王文龙, 胡洪营, 刘玉红, 等. 混凝和强化混凝对印染废水中锑(Ⅴ)的去除特性[J]. 环境科学学报, 2019, 39(10): 3374-3380. DOI:10.13671/j.hjkxxb. 2019.0276
WANG W L, HU H Y, LIU Y H, et al. Comparative study on the removal of antinomy (Ⅴ) from dyeing and finishing wastewater by conventional and enhanced coagulation[J]. Acta Scientiae Circumstantiae, 2019, 39(10): 3374-3380. DOI:10.13671/j.hjkxxb.2019.0276
doi: 10.13671/j.hjkxxb.2019.0276
5 邓仁健, 金昌盛, 侯保林, 等. 微生物处理含锑重金属废水的研究进展[J]. 环境污染与防治, 2018, 40(4): 465-472. DOI:10.15985/j.cnki.1001-3865.2018.04.020
DENG R J, JIN C S, HOU B L, et al. Research progress of microorganism treating antimony-containing wastewater[J]. Environmental Pollution and Control, 2018, 40(4): 465-472. DOI:10. 15985/j.cnki.1001-3865.2018.04.020
doi: 10. 15985/j.cnki.1001-3865.2018.04.020
6 吴云海, 胡玥, 谢正威. SBR活性污泥吸附水中重金属离子的研究[J]. 水资源保护, 2010, 26(5): 71-74. DOI:10.3969/j.issn.1004-6933.2010.05.017
WU Y H, HU Y, XIE Z W. Study on the adsorption of heavy metal ions from aqueous solution by SBR activated sludge[J]. Water Resources Protection, 2010, 26(5): 71-74. DOI:10.3969/j.issn.1004-6933. 2010.05.017
doi: 10.3969/j.issn.1004-6933. 2010.05.017
7 张华峰. SBR活性污泥法去除火电厂脱硫废水中Cr3+、Cd2+和Pb2+的动态试验研究[D]. 北京: 北京交通大学, 2008.
ZHANG H F. Dynamic Study of Removing Cr3+, Cd2+ and Pb2+ from Desulfurization Wastewater of Thermal Power Plant by Bio-Sludge in Sequencing Batch Reactor (SBR) Systems[D]. Beijing: Beijing Jiaotong University, 2008.
8 王利. 铁修饰好氧颗粒污泥对含锑废水中重金属的吸附研究[D]. 上海: 复旦大学, 2014.
WANG L. Study on Adsorption of Heavy Metals onto Fe-Modified Aerobic Granular Sludge in Antimony-Containing Wastewater[D]. Shanghai: Fudan University, 2014.
9 李金春子. 强化零价铁还原水中Cr(Ⅵ)效能与机理及含铬泥渣固定化研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. doi:10.18869/acadpub.jafm.68.236.25086
LI J C Z. Efficiency and Mechanism of the Enhancement Reduction of Aqueous Cr(Ⅵ) by Zero-Valent Iron and the Solidification of Chromium in the Sludge and Residue[D]. Harbin: Harbin Institute of Technology, 2016. doi:10.18869/acadpub.jafm.68.236.25086
doi: 10.18869/acadpub.jafm.68.236.25086
10 黎小敏. 磷酸化零价铁去除水体铅及固化土壤铅的研究[D]. 上海: 华东师范大学, 2020.
LI X M. Removal of Lead from Water and Solidification of Lead in Contaminated Soil with Phosphorylated Zero-Valent Iron[D]. Shanghai: East China Normal University, 2020.
11 龙向宇, 方振东, 唐然, 等. EPS与阳离子对活性污泥沉降性能的影响研究[J]. 中国给水排水, 2010, 26(13): 50-53.
LONG X Y, FANG Z D, TANG R, et al. Effects of EPS and cation on the settleability of activated sludge[J]. China Water & Wastewater, 2010, 26(13): 50-53.
12 李威. 强化硫酸亚铁混凝去除印染废水中锑污染研究[D]. 杭州: 浙江大学, 2019. doi:10.29252/jafm.12.03.28662
LI W. Study on Removal of Antimony Pollution from Dyeing Wastewater by Enhanced Coagulation based on Ferrous Sulfate[D]. Hangzhou: Zhejiang University, 2019. doi:10.29252/jafm.12.03.28662
doi: 10.29252/jafm.12.03.28662
13 史成超, 李威, 李浩铭, 等. 钙强化硫酸亚铁对印染废水中锑的去除研究[J]. 环境污染与防治, 2021, 43(6): 708-711. DOI:10.15985/j.cnki.1001-3865.2021.06.008
SHI C C, LI W, LI H M, et al. Removal of antimony in printing and dyeing wastewater by calcium-enhanced ferrous sulfate[J]. Environmental Pollution & Control, 2021, 43(6): 708-711. DOI:10.15985/j.cnki.1001-3865.2021.06.008
doi: 10.15985/j.cnki.1001-3865.2021.06.008
14 DONG H R, GUAN X H, WANG D S, et al. Individual and combined influence of calcium and anions on simultaneous removal of chromate and arsenate by Fe(Ⅱ) under suboxic conditions[J]. Separation and Purification Technology, 2011, 80(2): 284-292. DOI:10.1016/J.SEPPUR.2011. 05.007
doi: 10.1016/J.SEPPUR.2011. 05.007
15 杨其学. 纳米零价铁、Fe2+和Fe3+对好氧颗粒污泥性能的影响研究[D]. 合肥: 安徽大学, 2020.
YANG Q X. Study on Impact of Nanoscale Zero-Valent Iron, Fe2+ and Fe3+ on the Properties of Aerobic Granular Sludge[D]. Hefei: Anhui University, 2020.
16 张国威, 黄建, 崔浩, 等. 活性污泥对Pb(Ⅱ)的吸附机理[J]. 环境工程学报, 2016, 10(7): 3707-3714. DOI:10.12030/j.cjee.201502012
ZHANG G W, HUANG J, CUI H, et al. Sorption mechanisms of Pb(Ⅱ) on activated sludge[J]. Chinese Journal of Environmental Engineering, 2016, 10(7): 3707-3714. DOI:10.12030/j.cjee. 201502012
doi: 10.12030/j.cjee. 201502012
17 李姗姗, 朱四富, 马丙瑞, 等. Cu2+对序批式反应器中活性污泥胞外聚合物产量及其组分的影响[J]. 中国海洋大学学报(自然科学版), 2020, 50(2): 107-115. DOI:10.16441/j.cnki.hdxb.20190035
LI S S, ZHU S F, MA B R, et al. Effect of Cu2+ on the production and composition of extracellular polymeric substances in the activated sludge from a sequencing batch reactor[J]. Periodical of Ocean University of China, 2020, 50(2): 107-115. DOI:10.16441/j.cnki.hdxb.20190035
doi: 10.16441/j.cnki.hdxb.20190035
18 柴德芳, 宋萍, 申露文, 等. Aeromonas veronii N8不同类型胞外聚合物的性质及其Zn2+吸附特征[J]. 环境科学学报, 2016, 36(10): 3665-3674. DOI:10.13671/j.hjkxxb.2015.0787
CHAI D F, SONG P, SHEN L W, et al. The properties of extracelluar polymeric substances of Aeromonas veronii N8 and its adsorption for Zn2+ [J]. Acta Scientiae Circumstantiae, 2016, 36(10): 3665-3674. DOI:10.13671/j.hjkxxb.2015.0787
doi: 10.13671/j.hjkxxb.2015.0787
19 YANG K, ZHOU J, LOU Z, et al. Removal of Sb(Ⅴ) from aqueous solutions using Fe-Mn binary oxides: The influence of iron oxides forms and the role of manganese oxides[J]. Chemical Engineering Journal, 2018, 354: 577-588. doi:10.1016/j.cej.2018.08.069
doi: 10.1016/j.cej.2018.08.069
20 ABDEL-SAMAD H S, WATSON P R, et al. An XPS study of the adsorption of chromate on goethite (α-FeO(OH))[J]. Applied Surface Science, 1997, 108(3): 371-377. DOI:10.1016/S0169-4332(96)00609-5
doi: 10.1016/S0169-4332(96)00609-5
21 熊慧欣, 周立祥. 不同晶型羟基氧化铁(FeO(OH))的形成及其在吸附去除Cr(Ⅵ)上的作用[J]. 岩石矿物学杂志, 2008, 27(6): 559-566. DOI:10.3969/j.issn.1000-6524.2008.06.008
XIONG H X, ZHOU L X. Synthesis of iron oxyhydroxides of different crystal forms and their roles in adsorption and removal of Cr(Ⅵ) from aqueous solutions[J]. Acta Petrologica et Mineralogica, 2008, 27(6): 559-566. DOI:10.3969/j.issn.1000-6524.2008.06.008
doi: 10.3969/j.issn.1000-6524.2008.06.008
22 MITSUNOBU S, TAKAHASHI Y, TERADA Y, et al. Antimony(Ⅴ) incorporation into synthetic ferrihydrite, goethite, and natural iron oxyhydroxides[J]. Environmental Science & Technology, 2010, 44(10): 3712-3718. DOI:10.1021/es903901e .
doi: 10.1021/es903901e
23 SUN F H, WU F C, LIAO H Q, et al. Biosorption of antimony(Ⅴ) by freshwater cyanobacteria microcystis biomass: Chemical modification and biosorption mechanisms[J]. Chemical Engineering Journal, 2011, 171(3): 1082-1090. DOI:10.1016/j.cej.2011.05.004
doi: 10.1016/j.cej.2011.05.004
24 LIU D F, TAO Y, LI K X, et al. Influence of the presence of three typical surfactants on the adsorption of nickel (Ⅱ) to aerobic activated sludge[J]. Bioresource Technology, 2012, 126(1): 56-63. DOI:10.1016/j.biortech.2012.09.025
doi: 10.1016/j.biortech.2012.09.025
25 LEE B M, SHIN H S, HUR J, et al. Comparison of the characteristics of extracellular polymeric substances for two different extraction methods and sludge formation conditions[J]. Chemosphere, 2013, 90(2): 237-244. DOI:10.1016/j.chemosphere.2012. 06.060
doi: 10.1016/j.chemosphere.2012. 06.060
26 YAN C Z, LI G X, XUE P Y, et al. Competitive effect of Cu(Ⅱ) and Zn(Ⅱ) on the biosorption of lead(Ⅱ) by Myriophyllum spicatum [J]. Journal of Hazardous Materials, 2010, 179(1-3): 721-728. DOI:10.1016/j.jhazmat.2010.03.061
doi: 10.1016/j.jhazmat.2010.03.061
27 刘辉, 李平, 魏雨, 等. 红外光谱技术在铁氧化物形成研究中的应用[J]. 河北师范大学学报(自然科学版), 2005, 29(3): 272-276. DOI:10.3969/j.issn.1000-5854.2005.03.015
LIU H, LI P, WEI Y, et al. Application of IR spectra in the studies on the formation of iron (Hydr) oxides[J]. Journal of Hebei Normal University (Natural Science Edition), 2005, 29(3): 272-276. DOI:10.3969/j.issn.1000-5854.2005.03.015
doi: 10.3969/j.issn.1000-5854.2005.03.015
28 SARIC A, MUSIC S, NOMURA K, et al. Microstructural properties of Fe-oxide powders obtained by precipitation from FeCl3 solutions[J]. Materials Science and Engineering B, 1998, 56(1): 43-52. DOI:10.1016/S0921-5107(98)00212-8
doi: 10.1016/S0921-5107(98)00212-8
29 CHAO A. Nonparametric estimation of the number of classes in a population[J]. Scandinavian Journal of Statistics, 1984, 11(4): 265-270.
30 SHANON C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3): 379-423. DOI:10.1002/j.1538-7305.1948.tb01338.x
doi: 10.1002/j.1538-7305.1948.tb01338.x
31 SIMPSON E H. Measurement of diversity[J]. Nature, 1949, 163(4148): 688. DOI:10.1038/163688a0
doi: 10.1038/163688a0
32 王年, 鲁小璐, 邬梦晓俊, 等. 微生物氧化As(Ⅲ)和Sb(Ⅲ)的研究进展[J]. 微生物学通报, 2016, 44(3): 689-700. DOI:10.13344/j.microbiol.china. 160312
WANG N, LU X L, WU M X J, et al. Progress in microbial oxidation of As(Ⅲ) and Sb(Ⅲ)[J]. 微生物学通报, 2016, 44(3): 689-700. DOI:10.13344/j.microbiol.china.160312
doi: 10.13344/j.microbiol.china.160312
[1] 周楚晨,李成,钱建英,杨昆仑,胡韵璇,徐新华. 氧化铁红对印染废水中锑(V)的吸附性能[J]. 浙江大学学报(理学版), 2022, 49(2): 201-209.