Please wait a minute...
浙江大学学报(理学版)  2023, Vol. 50 Issue (2): 144-152    DOI: 10.3785/j.issn.1008-9497.2023.02.003
数学与计算机科学     
气候因素与控制措施对COVID-19疫情传播的影响
闫琴玲1(),刘培宇2
1.长安大学 理学院,陕西 西安 710064
2.陕西师范大学 数学与统计学院,陕西 西安 710119
Impact of meteorological factors and control measures on the spread of COVID-19 epidemic
Qinling YAN1(),Peiyu LIU2
1.School of Science,Chang'an University,Xi'an 710064,China
2.School of Mathematics and Statistics,Shaanxi Normal University,Xi'an 710119,China
 全文: PDF(1501 KB)   HTML( 5 )
摘要:

COVID-19疫情的暴发对医疗机构、社会和经济带来了前所未有的挑战,因此有必要了解影响该疾病传播的潜在因素。首先,采用统计描述获取COVID-19日新增病例数和气候因素的时空分布特征。然后,基于纵向数据的Poisson回归模型和广义估计方程(GEE),研究了COVID-19病例数与气候因素、控制措施和人口密度之间的关系。结果表明,影响COVID-19疫情的因素是多方面的,控制措施对COVID-19疫情的影响最为显著,其次是平均温度、平均相对湿度、平均露点、气候因素的长期趋势和季节变化。在不同的时滞水平下,平均温度与平均相对湿度、平均温度与平均风速、平均温度与平均大气压强之间的交互作用具有统计显著性,这进一步说明,多种因素的相互作用引起COVID-19疫情的暴发。研究结果可为疫情防控部门制定有效的、强有力的管控措施提供一定的依据。

关键词: COVID-19气候因素控制措施Poisson回归模型广义估计方程(GEE)    
Abstract:

As COVID-19 outbreak poses an unprecedented challenge for healthcare organizations, societies and economies, there is an increasing necessity to understand the factors underlying the spread of the disease. The statistical descriptions are employed to address spatial-temporal distribution characteristic of the COVID-19 cases and meteorological factors. Further, ten candidate Poisson regression models were formulated to explore the relationship among COVID-19 cases and meteorological factors, control measures and population density by generalized estimating equation (GEE) based on longitudinal data. The main results revealed that the impact factors for the COVID-19 prevalence are manifold, and control measures have the most significant impact on COVID-19 prevalence, followed by the effect of average temperature, average relative humidity, average dew point, long-term trend and seasonal changes of meteorogical factors. And also, the interaction effects between average temperature and average relative humidity, average temperature and average wind speed, average temperature and average pressure are statistically significant at the different lag level. This further shows that the interaction of multiple factors could result in COVID-19 outbreak, and thus providing some bases for the epidemic prevention and control departments to enact effective and powerful management measures.

Key words: COVID-19    meteorological factors    control measures    Poisson regression model    generalized estimating equation (GEE)
收稿日期: 2021-10-05 出版日期: 2023-03-21
CLC:  O 29  
基金资助: 国家自然科学基金资助项目(12001058);陕西省自然科学基础研究计划资助项目(2021JQ-215);陕西省高校科协青年人才托举计划资助项目(20210511)
作者简介: 闫琴玲(1988—),ORCID:https://orcid.org/0000-0002-0927-9197,女,博士研究生,讲师,主要从事生物统计、生物数学研究,E-mail:yanqinling1222@chd.edu.cn.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
闫琴玲
刘培宇

引用本文:

闫琴玲,刘培宇. 气候因素与控制措施对COVID-19疫情传播的影响[J]. 浙江大学学报(理学版), 2023, 50(2): 144-152.

Qinling YAN,Peiyu LIU. Impact of meteorological factors and control measures on the spread of COVID-19 epidemic. Journal of Zhejiang University (Science Edition), 2023, 50(2): 144-152.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2023.02.003        https://www.zjujournals.com/sci/CN/Y2023/V50/I2/144

图1  4个城市、16个国家COVID-19新增病例数、控制措施、人口密度
图2  2020年1月16日至5月12日10个城市的气候因素时间序列
模型QICC/×106
l=0 dl=1 dl=2 dl=3 dl=4 dl=5 dl=6 dl=7 d
A12.256 42.264 02.275 22.291 32.298 92.298 22.298 12.296 3
A22.218 72.233 72.239 62.260 72.278 22.278 92.286 12.286 5
A32.185 52.199 12.214 72.240 32.259 92.263 72.253 02.258 1
A42.151 02.156 92.164 42.199 52.224 52.228 52.215 32.218 3
A52.150 32.156 52.164 22.197 52.221 82.222 02.206 82.206 1
A62.147 32.154 02.161 92.195 92.221 02.222 02.205 62.205 1
A72.142 72.147 22.154 72.189 62.216 32.216 82.201 42.198 2
A82.140 32.144 42.151 72.188 82.213 42.214 92.200 82.198 2
A92.139 22.143 52.151 72.188 52.212 82.214 32.197 72.194 9
A102.135 92.138 42.147 52.184 82.207 52.209 22.194 52.192 1
表1  10个候选模型的QICC值
时滞l/d参数B?eB?eB?LeB?U时滞l/d参数B?eB?eB?LeB?U
0c10.0101.0101.0021.0184c2-0.0340.9660.9520.980
c2-0.0330.9680.9560.980β2-0.2890.7490.5660.991
β10.4861.6251.0942.415β90.1711.1871.0231.378
β2-0.4110.6630.4800.916γ-4.0510.0170.0020.139
β70.1751.1921.0301.379
β8-0.1650.8480.7430.968
β90.1621.1761.0131.366
γ-3.0980.0450.0080.253
ν0.1251.1331.0971.171
1c10.0091.0091.0011.0175c2-0.0360.9650.9510.980
c2-0.0330.9680.9550.980β2-0.2540.7760.6030.998
β10.4341.5431.0792.208β70.1451.1561.0011.334
β2-0.3970.6720.4900.922β90.1701.1851.0291.364
β30.2821.3261.0161.732γ-4.4110.0120.0010.105
β70.1671.1821.0151.377ν0.1411.1521.0971.210
β8-0.1610.8510.7460.971
β90.1831.2011.0321.397
γ-3.3060.0370.0060.228
ν0.1281.1361.0961.178
2c2-0.0330.9670.9550.9816c2-0.0360.9640.9500.979
β10.3841.4691.0372.080β8-0.1150.8920.7961.000
β2-0.3760.6870.4960.951β90.1681.1821.0241.365
β30.2681.3071.0021.705γ-4.6810.0090.0010.085
β70.1801.1971.0321.387ν0.1451.1551.0981.216
β90.1961.2161.0451.416
γ-3.5500.0290.0040.199
ν0.1301.1391.0951.185
3c2-0.0340.9670.9530.9807c2-0.0360.9640.9490.980
β10.3501.4191.0291.956β70.1281.1371.0201.267
β2-0.3500.7040.5230.949β90.1651.1801.0211.363
β70.1681.1831.0171.375γ-4.8900.0080.0010.081
β90.1731.1891.0181.389ν0.1461.1581.0941.225
γ-3.8340.0220.0030.158
ν0.1341.1441.0971.193
表2  不同时滞水平下式(2)中具有统计显著性的参数估计值
  
1 BASHIR M, MA B, BILAL, et al. Correlation between climate indicators and COVID-19 pandemic in New York, USA[J]. Science of the Total Environment, 2020, 728: 138835. DOI:10.1016/j.scitotenv. 2020. 138835 .
doi: 10.1016/j.scitotenv. 2020. 138835
2 TOSEPU R, GUNAWAN J, EFFENDY D, et al. Correlation between weather and COVID-19 pandemic in Jakarta, Indonesia[J]. Science of the Total Environment, 2020, 725: 138436. DOI:10. 1016/j.scitotenv.2020.138436 .
doi: 10. 1016/j.scitotenv.2020.138436
3 PRATA D, RODRIGUES W, BERMEJO P. Temperature significantly changes COVID-19 transmission in (sub) tropical cities of Brazil[J]. Science of the Total Environment, 2020, 729: 138862. DOI:10.1016 /j.scitotenv.2020.138862 .
doi: 10.1016 /j.scitotenv.2020.138862
4 LIU J, ZHOU J, YAO J, et al. Impact of meteorological factors on the COVID-19 transmission: A multicity study in China[J]. Science of the Total Environment, 2020, 726: 138513. DOI:10.1016/j.scitotenv. 2020.138513 .
doi: 10.1016/j.scitotenv. 2020.138513
5 SHI P, DONG Y, YAN H, et al. Impact of temperature on the dynamics of the COVID-19 outbreak in China[J]. Science of the Total Environment, 2020, 728: 138890. DOI:10.1016/j.scitotenv.2020.13 8890 .
doi: 10.1016/j.scitotenv.2020.13 8890
6 KUBOTA Y, SHIONO T, KUSUMOTO B, et al. Multiple drivers of the COVID-19 spread: Role of climate, international mobility, and region-specific conditions[J]. PLoS ONE, 2020, 15(9): e0239385. DOI:10.1101 /2020.04.20.20072157 .
doi: 10.1101 /2020.04.20.20072157
7 MECENAS P, BASTOS R, VALLINOTO A, et al. Effects of temperature and humidity on the spread of COVID-19: A systematic review[J]. PLoS ONE, 2020, 15(9): e0238339. DOI:10.1101/2020.04.14. 20064923 .
doi: 10.1101/2020.04.14. 20064923
8 RUNKLE J, SUGG M, LEEPER R, et al. Short-term effects of specific humidity and temperature on COVID-19 morbidity in select US cities[J]. Science of the Total Environment, 2020, 740: 140093. DOI:10.10 16/j.scitotenv.2020.140093 .
doi: 10.10 16/j.scitotenv.2020.140093
9 BOLDOG P, TEKELI T, VIZI Z, et al. Risk assessment of novel coronavirus COVID-19 outbreaks outside China[J]. Journal of Clinical Medicine, 2020, 9(2): 571. DOI:10.3390/jcm 9020571 .
doi: 10.3390/jcm 9020571
10 TANG B, WANG X, LI Q, et al. Estimation of the transmission risk of 2019-nCov and its implication for public health interventions[J]. Journal of Clinical Medicine, 2020, 9(2): 462. DOI:10.3390/jcm 9020462 .
doi: 10.3390/jcm 9020462
11 TANG B, BRAGAZZI N, LI Q, et al. An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov) [J]. Infectious Disease Modelling, 2020, 5: 248-255. DOI:10.1016/j.idm. 2020.02.001 .
doi: 10.1016/j.idm. 2020.02.001
12 YAN Q L, TANG L Y, YAN D D, et al. Impact of media reports on the early spread of COVID-19 epidemic[J]. Journal of Theoretical Biology, 2016, 390:1-13. DOI:10.1016/j.jtbi.2015.11.002 .
doi: 10.1016/j.jtbi.2015.11.002
13 MCCULLAGH P M, NELDER J A S, 1989. Generalized Linear Models[M]. 2nd ed. New York: Chapman and Hall, CRC, 1989. doi:10.1007/978-1-4899-3242-6
doi: 10.1007/978-1-4899-3242-6
14 DOMINICI F, SHEPPARD L, CLYDE M. Health effects of air pollution: A statistical review[J]. International Statistical Review, 2003, 71(2): 243-276. doi:10.1111/j.1751-5823.2003.tb00195.x
doi: 10.1111/j.1751-5823.2003.tb00195.x
15 WATSON G, XIONG D, ZHANG L, et al. Pandemic velocity: Forecasting COVID-19 in the US with a machine learning & Bayesian time series compartmental model[J]. PLoS Computational Biology, 2021, 17(3): e1008837. DOI:10.1371/jour nal.pcbi.1008837 .
doi: 10.1371/jour nal.pcbi.1008837
16 GUAN W, NI Z, HU Y, et al. Clinical characteristics of coronavirus disease 2019 in China[J]. Journal of Integrative Medicine, 2020, 18: 395-400. DOI:10. 1016/j.joim.2020.07.002 .
doi: 10. 1016/j.joim.2020.07.002
17 ZEGER S, LIANG K. Longitudinal data analysis for discrete and continuous outcomes[J]. Biometrics, 1986, 42(1): 121-130. doi:10.2307/2531248
doi: 10.2307/2531248
18 LIANG K, ZEGER S. Longitudinal data analysis using generalized linear models[J]. Biometrika, 1986, 73 (1): 13-22. doi:10.1093/biomet/73.1.13
doi: 10.1093/biomet/73.1.13
19 ZEGER S, LIANG K. An overview of methods for the analysis of longitudinal data[J]. Statistics in Medicine, 1992, 2: 1825-1839. doi:10.1002/sim.4780111406
doi: 10.1002/sim.4780111406
20 HAUCK W, DONNER A. Wald's test as applied to hypotheses in logit analysis[J]. Journal of the American Statistical Association, 1977, 72(360): 851-853. doi:10.2307/2286473
doi: 10.2307/2286473
21 JUNI P, ROTHENBUHLER M, BOBOS P, et al. Impact of climate and public health interventions on the COVID-19 pandemic: A prospective cohort study [J]. Canadian Medical Association Journal, 2020, 192(21): E566-E573. DOI:10.1503/ cmaj. 200920 .
doi: 10.1503/ cmaj. 200920
22 SAJADI M, HABIBZADEH P, VINTZILEOS A, et al. Temperature, humidity, and latitude analysis to estimate potential spread and seasonality of coronavirus disease 2019 (COVID-19)[J]. JAMA Network Open, 2020, 3(6): e2011834. DOI:10. 1001 /jamanetworkopen.2020.11834 .
doi: 10. 1001 /jamanetworkopen.2020.11834
23 WANG Y, WANG Y, CHEN Y, et al. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures[J]. Journal of Medical Virology, 2020, 92(6): 568-576. DOI:10. 1002/jmv.25748 .
doi: 10. 1002/jmv.25748
24 MA Y, ZHAO Y, LIU J, et al. Effects of temperature variation and humidity on the mortality of COVID-19 in Wuhan[J]. Science of the Total Environment, 2020, 724: 138226. DOI:10.1016/j.scitotenv.2020.138226 .
doi: 10.1016/j.scitotenv.2020.138226
[1] 赵丽宁, 李君轶. 疫情期间居住环境对城市居民焦虑情绪的影响[J]. 浙江大学学报(理学版), 2021, 48(5): 642-650.
[2] 徐婷婷, 李钢, 高兴, 王皎贝, 王钰, 张千禧. 浙江省新型冠状病毒肺炎(COVID-19)疫情时空演化与影响因素分析[J]. 浙江大学学报(理学版), 2021, 48(3): 356-367.