Please wait a minute...
浙江大学学报(理学版)  2023, Vol. 50 Issue (1): 69-82    DOI: 10.3785/j.issn.1008-9497.2023.01.011
化学     
绿藻光合产氢的研究进展
张亚琴1,2(),唐睿康1,2,马为民3,熊威4,徐旭荣2()
1.浙江大学 化学系,浙江 杭州 310027
2.浙江大学 求是高等研究院,浙江 杭州 310027
3.上海师范大学 生命科学学院,上海 200234
4.南昌大学 化学化工学院,江西 南昌 330031
Progress of photobiological hydrogen production by green algae
Yaqin ZHANG1,2(),Ruikang TANG1,2,Weimin MA3,Wei XIONG4,Xurong XU2()
1.Department of Chemistry,Zhejiang University,Hangzhou 310027,China
2.Qiushi Academy for Advanced Studies,Zhejiang University,Hangzhou 310027,China
3.College of Life Sciences,Shanghai Normal University,Shanghai 200234,China
4.School of Chemistry and Chemical Engineering,Nanchang University,Nanchang 330031,China
 全文: PDF(2607 KB)   HTML( 16 )
摘要:

绿藻光合产氢具有能量转化效率高、环境友好、原料丰富等优势,在太阳能利用和氢能生产方面具有光明的应用前景。从绿藻光合产氢的生物学机理出发,分析了限制绿藻光合产氢的潜在因素,总结了各类提升绿藻光合产氢效率的方法,并简要评述了绿藻光合产氢实现商业化应用所面临的主要问题及发展趋势,为未来绿藻光合产氢的大规模应用提供参考。

关键词: 绿藻光合产氢氢化酶氧敏感性电子源    
Abstract:

Photobiological hydrogen production by green algae exhibits a bright application prospect in solar energy utilization and hydrogen energy production due to the advantages of high energy conversion efficiency, environmental friendliness as well as abundant raw materials. This paper analyzes the potential factors limiting photobiological hydrogen production by green algae based on the mechanism, and summarizes various methods to improve the efficiency of photobiological hydrogen production by green algae. The main problems and development trends in the commercial application of photobiological hydrogen production by green algae are briefly reviewed, which are referable for the large-scale application of photobiological hydrogen production by green algae in the future.

Key words: green algae    photobiological hydrogen    hydrogenase    O2 sensitivity    electronic sources
收稿日期: 2022-03-30 出版日期: 2023-01-13
CLC:  Q 949  
基金资助: 国家自然科学基金资助项目(21875215)
通讯作者: 徐旭荣     E-mail: 11837050@zju.edu.cn;xrxu@zju.edu.cn
作者简介: 张亚琴(1994—),ORCID:https://orcid.org/0000-0003-2456-9704,硕士研究生,主要从事绿藻光合产氢研究,E-mail: 11837050@zju.edu.cn.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张亚琴
唐睿康
马为民
熊威
徐旭荣

引用本文:

张亚琴,唐睿康,马为民,熊威,徐旭荣. 绿藻光合产氢的研究进展[J]. 浙江大学学报(理学版), 2023, 50(1): 69-82.

Yaqin ZHANG,Ruikang TANG,Weimin MA,Wei XIONG,Xurong XU. Progress of photobiological hydrogen production by green algae. Journal of Zhejiang University (Science Edition), 2023, 50(1): 69-82.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2023.01.011        https://www.zjujournals.com/sci/CN/Y2023/V50/I1/69

图1  绿藻产氢途径示意[12](pathway 1 and pathway 2) in green algae (pathway 3)
图2  CO、O2与H-团簇的氧化态(Hox)的反应模型示意[22]
产氢方法绿藻种类产氢条件产氢总量/(mL·L-1产氢持续时间/d参考文献
氮气吹扫法C. reinhardtii氮气吹扫,补充二氧化碳<206031
添加除氧剂C. reinhardtii CC50313 mol·L-1 NaHSO3,逐步添加法~112338
C. reinhardtii葡萄糖氧化酶组合、氢氧化镁7782639
藻菌共培养Chlorella sp. MACC 360与大肠杆菌共培养~91140
控制光照法C. reinhardtii CC124脉冲光照条件(1 s光照/9 s黑暗)~732.2541
细胞聚集法ChlorellaPDADMAC诱导矿化17242
代谢调控法Chlorella protothecoidesTAP-S(0.35 mM NH4Cl)2344.1743
Chlorella sorokiniana strain CeTAP-S~1507.3844
基因突变法C. reinhardtii 突变体stm6TAP-S5401445
C. reinhardtii 质子梯度突变体pgr5TAP-S850946
C. reinhardtii D1蛋白突变体L159I-N230YTAP-S5041247
基因改造法C. reinhardtii CC849基因改造hemHc-lbacTAP-S、氮气吹扫82.5548
C. reinhardtii 基因改造hydA-SOD融合酶葡萄糖氧化酶组合1841449
表1  各种光合产氢方法的产氢量
图3  通过构建漆酶调节的厌氧层,利用蛋白核小球藻产氢[60]
图4  藻-菌共培养物(衣藻和大肠杆菌共培养物)的光合和发酵产氢原理[61]
图5  小球藻聚集体空间功能分化产氢示意[42]
图6  硫充足条件下和无硫条件下细胞内过程和通路示意[71]浅灰色箭头和文字表示不活跃的途径或过程。
图7  提升光合产氢的方法总结“+”数量越多,代表提升产氢效率的潜力值越高。
1 BOGDANOV D, FARFAN J, SADOVSKAIA K, et al. Radical transformation pathway towards sustainable electricity via evolutionary steps[J]. Nature Communications, 2019, 10(1): 1077-1093. DOI:10.1038/s41467-019-08855-1
doi: 10.1038/s41467-019-08855-1
2 LEWIS N S. Developing a scalable artificial photosynthesis technology through nanomaterials by design[J]. Nature Nanotechnology, 2016, 11(12): 1010-1019. DOI:10.1038/nnano.2016.194
doi: 10.1038/nnano.2016.194
3 WARNAN J, REISNER E. Synthetic organic design for solar fuel systems[J]. Angewandte Chemie International Edition, 2020, 59(40): 17344-17354. DOI:10.1002/anie.202006013
doi: 10.1002/anie.202006013
4 GREGORY D P, PANGBORN J B. Hydrogen energy[J]. Annual Review of Energy, 1976, 1: 279-310. DOI:10.1146/annurev.eg.01. 110176.001431
doi: 10.1146/annurev.eg.01. 110176.001431
5 RAMACHANDRAN R, MENON R K. An overview of industrial uses of hydrogen[J]. International Journal of Hydrogen Energy, 1998, 23(7): 593-598. DOI:10.1016/S0360-3199(97)00112-2
doi: 10.1016/S0360-3199(97)00112-2
6 GUPTA R, JALIL M F. An Overview of Using Hydrogen in Transportation Sector as Fuel[M]. Singapore: Springer, 2021. DOI:10.1007/978-981-33-4080-0_49
doi: 10.1007/978-981-33-4080-0_49
7 TURNER J A. A realizable renewable energy future[J]. Science, 1999, 285(5428): 687-689. DOI:10.1126/science.285.5428.687 .
doi: 10.1126/science.285.5428.687
8 KORNIENKO N, ZHANG J Z, SAKIMOTO K K, et al. Interfacing nature's catalytic machinery with synthetic materials for semi-artificial photosynthesis[J]. Nature Nanotechnology, 2018, 13(10): 890-899. DOI:10.1038/s41565-018-0251-7
doi: 10.1038/s41565-018-0251-7
9 GAFFRON H, RUBIN J. Fermentative and photochemical production of hydrogen in algae[J]. The Journal of General Physiology, 1942, 26(2): 219-240. DOI:10.1085/jgp.26.2.219
doi: 10.1085/jgp.26.2.219
10 MELIS A. Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency[J]. Plant Science, 2009, 177(4): 272-280. DOI:10.1016/j.plantsci.2009.06.005
doi: 10.1016/j.plantsci.2009.06.005
11 KUVYKIN I V, VERSHUBSKⅡ A V, TIKHONOV A N. Alternative pathways of photoinduced electron transport in chloroplasts[J]. Russian Journal of Physical Chemistry B, 2009, 3(2): 230-241. DOI:10.1134/S1990793109020092
doi: 10.1134/S1990793109020092
12 EROGLU E, MELIS A. Microalgal hydrogen production research[J]. International Journal of Hydrogen Energy, 2016, 41(30): 12772-12798. DOI:10.1016/j.ijhydene.2016.05.115
doi: 10.1016/j.ijhydene.2016.05.115
13 HEMSCHEMEIER A, HAPPE T. Alternative photosynthetic electron transport pathways during anaerobiosis in the green alga Chlamydomonas reinhardtii [J]. Biochimica et Biophysica Acta-Bioenergetics, 2011, 1807(8): 919-926. DOI:10. 1016/j.bbabio.2011.02.010
doi: 10. 1016/j.bbabio.2011.02.010
14 YANG W J, CATALANOTTI C, WITTKOPP T M, et al. Algae after dark: Mechanisms to cope with anoxic/hypoxic conditions[J]. The Plant Journal, 2015, 82(3): 481-503. DOI:10.1111/tpj.12823
doi: 10.1111/tpj.12823
15 BATYROVA K, HALLENBECK P C. Recent Developments in Light‑Driven H2 Production by the Green Alga, Chlamydomonas Reinhardtii [M]. London: Future Science, 2015: 82-95. DOI:10. 4155/fseb2013.14.269
doi: 10. 4155/fseb2013.14.269
16 MEUSER J E, ANANYEV G, WITTIG L E, et al. Phenotypic diversity of hydrogen production in chlorophycean algae reflects distinct anaerobic metabolisms[J]. Journal of Biotechnology, 2009, 142(1): 21-30. DOI:10.1016/j.jbiotec.2009.01.015
doi: 10.1016/j.jbiotec.2009.01.015
17 FLORIN L, TSOKOGLOU A, HAPPE T. A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain[J]. Journal of Biological Chemistry, 2001, 276(9): 6125-6132. DOI:10.1074/jbc.M008470200
doi: 10.1074/jbc.M008470200
18 BRODERICK J B, BYER A S, DUSCHENE K S, et al. H-cluster assembly during maturation of the [FeFe]-hydrogenase[J]. JBIC Journal of Biological Inorganic Chemistry, 2014, 19(6): 747-757. DOI:10.1007/s00775-014-1168-8
doi: 10.1007/s00775-014-1168-8
19 PETROVA E V, KUKARSKIKH G P, KRENDELEVA T E, et al. The mechanisms and role of photosynthetic hydrogen production by green microalgae[J]. Microbiology, 2020, 89(3): 251-265. DOI:10.1134/S0026261720030169
doi: 10.1134/S0026261720030169
20 GHIRARDI M L, KING P W, POSEWITZ M C, et al. Approaches to developing biological H2-photoproducing organisms and processes[J]. Biochemical Society Transactions, 2005, 33(1): 70-72. DOI:10.1042/BST0330070
doi: 10.1042/BST0330070
21 GHIRARDI M L, POSEWITZ M C, MANESS P C, et al. Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms[J]. Annual Review of Plant Biology, 2007, 58(1): 71-91. DOI:10.1146/annurev.arplant.58.032806.103848
doi: 10.1146/annurev.arplant.58.032806.103848
22 STRIPP S T, GOLDET G, BRANDMAYR C, et al. How oxygen attacks [FeFe] hydrogenase from photosynthetic organisms[J]. Proceedings of the National Academy of Sciences, 2009, 106(41): 17331-17336. DOI:10.1073/pnas.0905343106
doi: 10.1073/pnas.0905343106
23 MEUSER J E, D’ADAMO S, JINKERSON R E, et al. Genetic disruption of both Chlamydomonas reinhardtii [FeFe]-hydrogenases: Insight into the role of HYDA2 in H2 production[J]. Biochemical & Biophysical Research Communications, 2012, 417: 704-709. DOI:10.1016/j.bbrc.2011.12.002
doi: 10.1016/j.bbrc.2011.12.002
24 APPEL J, SCHULZ R. Hydrogen metabolism in organisms with oxygenic photosynthesis: Hydrogenases as important regulatory devices for a proper redox poising?[J]. Journal of Photochemistry & Photobiology B: Biology, 1998, 47(1): 1-11. DOI:10.1016/S1011-1344(98)00179-1
doi: 10.1016/S1011-1344(98)00179-1
25 ROCHAIX J D. REPRINT of: Regulation of photosynthetic electron transport[J]. Biochimica et Biophysica Acta(BBA)-Bioenergetics, 2011, 1807(8): 878-886. DOI:10.1016/j.bbabio.2011.05.009
doi: 10.1016/j.bbabio.2011.05.009
26 TOSHIHARU H, PETER S, DAVID B K. The Interaction of ferredoxin with ferredoxin-dependent enzymes[J]. Advances in Photosynthesis & Respiration, 2006, 24: 477-498. DOI:10.1007/978-1-4020-4256-0_28
doi: 10.1007/978-1-4020-4256-0_28
27 YACOBY I, POCHEKAILOV S, TOPORIK H, et al. Photosynthetic electron partitioning between [FeFe]- hydrogenase and ferredoxin: NADP+-oxidoreductase (FNR) enzymes in vitro[J]. Proceedings of the National Academy of Sciences, 2011, 108(23): 9396-9401. DOI:10.1073/pnas.1103659108
doi: 10.1073/pnas.1103659108
28 GODAUX D, BAILLEUL B, BERNE N, et al. Induction of photosynthetic carbon fixation in anoxia relies on hydrogenase activity and proton-gradient regulation-like1-mediated cyclic electron flow in Chlamydomonas reinhardtii [J]. Plant Physiology, 2015, 168(2): 648-658. DOI:10.1104/pp.15.00105
doi: 10.1104/pp.15.00105
29 LEE J W, GREENBAUM E, et al. A new oxygen sensitivity and its potential application in photosynthetic H2 production[J]. Applied Biochemistry and Biotechnology, 2003, 4(25): 303-313.
30 KOSOUROV S N, BATYROVA K A, PETUSHKOVA E P, et al. Maximizing the hydrogen photoproduction yields in Chlamydomonas reinhardtii cultures: The effect of the H2 partial pressure[J]. International Journal of Hydrogen Energy, 2012, 37(10): 8850-8858. DOI:10.1016/j.ijhydene.2012.01.082
doi: 10.1016/j.ijhydene.2012.01.082
31 GREENBAUM E, BLANKINSHIP S L, LEE J W, et al. Solar photobiochemistry: Simultaneous photoproduction of hydrogen and oxygen in a confined bioreactor[J]. The Journal of Physical Chemistry B, 2001, 105(17): 3605-3609. doi:10.1021/jp0042821
doi: 10.1021/jp0042821
32 SUBRAMANIAN V, DUBINI A, ASTLING D P, et al. Profiling Chlamydomonas metabolism under dark, anoxic H2-producing conditions using a combined proteomic, transcriptomic, and metabolomic approach[J]. Journal of Proteome Research, 2014, 13(12): 5431-5451. DOI:10.1021/pr500342j
doi: 10.1021/pr500342j
33 TSYGANKOV A A, KOSOUROV S N, TOLSTYGINA I V, et al. Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions[J]. International Journal of Hydrogen Energy, 2006, 31(11): 1574-1584. DOI:10.1016/j.ijhydene.2006.06.024
doi: 10.1016/j.ijhydene.2006.06.024
34 HAHN J J, GHIRARDI M L, JACOBY W A. Effect of process variables on photosynthetic algal hydrogen production[J]. Biotechnology Progress, 2004, 20(3): 989-991. doi:10.1021/bp0341287
doi: 10.1021/bp0341287
35 JO J H, LEE D S, PARK J M. Modeling and optimization of photosynthetic hydrogen gas production by green alga Chlamydomonas reinhardtii in sulfur-deprived circumstance[J]. Biotechnol Progress, 2006, 22(2): 431-437. DOI:10.1021/bp050258z
doi: 10.1021/bp050258z
36 WEI L Z, YI J, WANG L J, et al. Light intensity is important for hydrogen production in NaHSO3-treated Chlamydomonas reinhardtii [J]. Plant & Cell Physiology, 2017, 58(3): 451-457. DOI:10.1093/pcp/pcw216
doi: 10.1093/pcp/pcw216
37 KOSOUROV S, SEIBERT M, GHIRARDI M L. Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H2-producing Chlamydomonas reinhardtii cultures[J]. Plant & Cell Physiology, 2003, 44(2): 146-155. DOI:10.1093/pcp/pcg020
doi: 10.1093/pcp/pcg020
38 WEI L Z, LI X, FAN B Q, et al. A stepwise NaHSO3 addition mode greatly improves H2 photoproduction in Chlamydomonas reinhardtii [J]. Frontiers in Plant Science, 2018, 9: 1532-1539. DOI:10.3389/fpls.2018.01532.eCollection2018
doi: 10.3389/fpls.2018.01532.eCollection2018
39 CHEN J, LI J, LI Q, et al. Engineering a chemoenzymatic cascade for sustainable photobiological hydrogen production with green algae[J]. Energy & Environmental Science, 2020, 13(7): 2064-2068. DOI:10.1039/d0ee00993h
doi: 10.1039/d0ee00993h
40 LAKATOS G, BALOGH D, FARKAS A, et al. Factors influencing algal photobiohydrogen production in algal-bacterial co-cultures[J]. Algal Research, 2017, 28: 161-171. DOI:10.1016/j.algal.2017.10.024
doi: 10.1016/j.algal.2017.10.024
41 KOSOUROV S, JOKEL M, ARO E M, et al. A new approach for sustained and efficient H2 photoproduction by Chlamydomonas reinhardtii [J]. Energy & Environmental Science, 2018, 11(6): 1431-1436. DOI:10.1039/c8ee00054a
doi: 10.1039/c8ee00054a
42 XIONG W, ZHAO X H, ZHU G X, et al. Silicification-induced cell aggregation for the sustainable production of H2 under aerobic conditions[J]. Angewandte Chemie International Edition, 2015, 54(41): 11961-11965. DOI:10.1002/anie.201504634
doi: 10.1002/anie.201504634
43 HE M L, LI L, ZHANG L T, et al. The enhancement of hydrogen photoproduction in Chlorella protothecoides exposed to nitrogen limitation and sulfur deprivation[J]. International Journal of Hydrogen Energy, 2012, 37(22): 16903-16915. DOI:10.1016/j.ijhydene.2012.08.121
doi: 10.1016/j.ijhydene.2012.08.121
44 CHADER S, HACENE H, AGATHOS S N. Study of hydrogen production by three strains of Chlorella isolated from the soil in the Algerian Sahara[J]. International Journal of Hydrogen Energy, 2009, 34(11): 4941-4946. DOI:10.1016/j.ijhydene.2008.10.058
doi: 10.1016/j.ijhydene.2008.10.058
45 KRUSE O, RUPPRECHT J, BADER K P, et al. Improved photobiological H2 production in engineered green algal cells[J]. Journal of Biological Chemistry, 2005, 280(40): 34170-34177. DOI:10. 1074/jbc.M503840200
doi: 10. 1074/jbc.M503840200
46 STEINBECK J, NIKOLOVA D, WEINGARTEN R, et al. Deletion of proton gradient regulation 5 (PGR5) and PGR5-Like 1 (PGRL1) proteins promote sustainable light-driven hydrogen production in Chlamydomonas reinhardtii due to increased PSⅡ activity under sulfur deprivation[J]. Frontiers in Plant Science, 2015, 6: 1-11. DOI:10.3389/fpls.2015.00892
doi: 10.3389/fpls.2015.00892
47 TORZILLO G, SCOMA A, FARALONI C, et al. Increased hydrogen photoproduction by means of a sulfur-deprived Chlamydomonas reinhardtii D1 protein mutant[J]. International Journal of Hydrogen Energy, 2009, 34(10): 4529-4536. DOI:10.1016/j.ijhydene.2008.07.093
doi: 10.1016/j.ijhydene.2008.07.093
48 WU S X, HUANG R, XU L L, et al. Improved hydrogen production with expression of hemH and lba genes in chloroplast of Chlamydomonas reinhardtii [J]. Journal of Biotechnology, 2010, 146(3): 120-125. DOI:10.1016/j.jbiotec.2010.01.023
doi: 10.1016/j.jbiotec.2010.01.023
49 BEN-ZVI O, DAFNI E, FELDMAN Y, et al. Re-routing photosynthetic energy for continuous hydrogen production in vivo[J]. Biotechnology for Biofuels, 2019, 12(1): 1-13. DOI:10.1186/s13068-019-1608-3
doi: 10.1186/s13068-019-1608-3
50 BENEMANN J R. Hydrogen production by microalgae[J]. Journal of Applied Phycology, 2000, 12(3/4/5): 291-300. DOI:10.1023/A:1008175 112704
doi: 10.1023/A:1008175 112704
51 POW T, KRASNA A I. Photoproduction of hydrogen from water in hydrogenase-containing algae[J]. Archives of Biochemistry and Biophysics, 1979, 194(2): 413-421. DOI:10.1016/0003-9861(79)90635-0
doi: 10.1016/0003-9861(79)90635-0
52 MARQUEZ-REYES L A, SÁNCHEZ-SAAVEDRA M P, VALDEZ-VAZQUEZ I. Improvement of hydrogen production by reduction of the photosynthetic oxygen in microalgae cultures of Chlamydomonas gloeopara and Scenedesmus obliquus [J]. International Journal of Hydrogen Energy, 2015, 40(23): 7291-7300. DOI:10.1016/j.ijhydene.2015.04.060
doi: 10.1016/j.ijhydene.2015.04.060
53 WYKOFF D D, DAVIES J P, MELIS A, et al. The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii [J]. Plant Physiology, 1998, 117(1): 129-139. DOI:10.1104/pp.117.1.129
doi: 10.1104/pp.117.1.129
54 MELIS A, ZHANG L, FORESTIER M, et al. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii [J]. Plant Physiology, 2000, 122(1): 127-136. DOI:10.1104/pp.122.1.127
doi: 10.1104/pp.122.1.127
55 NOONE S, RATCLIFF K, DAVIS R A, et al. Expression of a clostridial [FeFe]-hydrogenase in Chlamydomonas reinhardtii prolongs photo-production of hydrogen from water splitting[J]. Algal Research, 2017, 22: 116-121. DOI:10.1016/j.algal.2016.12.014
doi: 10.1016/j.algal.2016.12.014
56 GREENBAUM E. Photosynthetic hydrogen and oxygen production: Kinetic studies[J]. Science, 1982, 215(4530): 291-293. DOI:10.1126/science. 215.4530.291
doi: 10.1126/science. 215.4530.291
57 GIBBS M, GFELLER R P, CHEN C. Fermentative metabolism of Chlamydomonas reinhardtii: Ⅲ photoassimilation of acetate[J]. Plant Physiology, 1986, 82(1):160-166. DOI:10.1104/pp.82.1.160
doi: 10.1104/pp.82.1.160
58 MA W M, CHEN M, WANG L J, et al. Treatment with NaHSO3 greatly enhances photobiological H2 production in the green alga Chlamydomonas reinhardtii [J]. Bioresource Technology, 2011, 102(18): 8635-8638. DOI:10.1016/j.biortech.2011. 03.052
doi: 10.1016/j.biortech.2011. 03.052
59 NAGY V, PODMANICZKI A, VIDAL-MEIRELES A, et al. Water-splitting-based, sustainable and efficient H2 production in green algae as achieved by substrate limitation of the Calvin-Benson-Bassham cycle[J]. Biotechnology for Biofuels, 2018, 11(1): 69-85. DOI:10.1186/s13068-018-1069-0
doi: 10.1186/s13068-018-1069-0
60 SU D Y, QI J R, LIU X M, et al. Enzyme-modulated anaerobic encapsulation of Chlorella cells allows switching from O2 to H2 production[J]. Angewandte Chemie International Edition, 2019, 58(12): 3992-3995. DOI:10.1002/anie.201900255
doi: 10.1002/anie.201900255
61 FAKHIMI N, DUBINI A, TAVAKOLI O, et al. Acetic acid is key for synergetic hydrogen production in Chlamydomonas-bacteria co-cultures[J]. Bioresource Technology, 2019, 289: 121648-121657. DOI:10.1016/j.biortech.2019.121648
doi: 10.1016/j.biortech.2019.121648
62 LAKATOS G, DEÁK Z, VASS I, et al. Bacterial symbionts enhance photo-fermentative hydrogen evolution of Chlamydomonas algae[J]. Green Chemistry, 2014, 16(11): 4716-4727. DOI:10. 1039/C4GC00745J
doi: 10. 1039/C4GC00745J
63 BAN S D, LIN W T, WU F Y, et al. Algal-bacterial cooperation improves algal photolysis-mediated hydrogen production[J]. Bioresource Technology, 2017, 251: 350-357. DOI:10.1016/j.biortech.2017.12.072
doi: 10.1016/j.biortech.2017.12.072
64 PACHAPUR V L, SARMA S J, BRAR S K, et al. Co-culture strategies for increased biohydrogen production[J]. International Journal of Energy Research, 2015, 39(11): 1479-1504. DOI:10.1002/er.3364
doi: 10.1002/er.3364
65 MARKOV S A, EIVAZOVA E R, GREENWOOD J. Photostimulation of H2 production in the green alga Chlamydomonas reinhardtii upon photoinhibition of its O2-evolving system[J]. International Journal of Hydrogen Energy, 2006, 31(10): 1314-1317. DOI:10.1016/j.ijhydene.2005.11.017
doi: 10.1016/j.ijhydene.2005.11.017
66 HOSHINO T, JOHNSON D J, CUELLO J L. Design of new strategy for green algal photo-hydrogen production: Spectral-selective photosystem Ⅰactivation and photosystem Ⅱ deactivation[J]. Bioresource Technology, 2012, 120: 233-240. DOI:10.1016/j.biortech.2012.06.011
doi: 10.1016/j.biortech.2012.06.011
67 SHU L, XIONG W, SHAO C Y, et al. Improvement in the photobiological hydrogen production of aggregated Chlorella by dimethyl sulfoxide[J]. Chembiochem, 2018, 19(7): 669-673. DOI:10.1002/cbic.201700637
doi: 10.1002/cbic.201700637
68 WYKOFF D D, DAVIES J P, MELIS A, et al. The regulation of photosynthetic electron transport during nutrient deprivation in chlamydomonas reinhardtii [J]. Plant Physiology, 1988, 117(1): 129-139. DOI:10.1104/pp.117.1.129
doi: 10.1104/pp.117.1.129
69 MELIS A, ZHANG L, FORESTIER M, et al. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii [J]. Plant Physiology, 2000, 122(1): 127-136. DOI:10.1104/pp.122.1.127
doi: 10.1104/pp.122.1.127
70 MELIS A, HAPPE T. Hydrogen production. green algae as a source of energy[J]. Plant Physiology, 2001, 127(3): 740-748. doi:10.1104/pp.010498
doi: 10.1104/pp.010498
71 WILLIAMS C R, BEES M A. Mechanistic modeling of sulfur-deprived photosynthesis and hydrogen production in suspensions of Chlamydomonas reinhardtii [J]. Biotechnology and Bioengineering, 2014, 111(2): 320-335. DOI:10.1002/bit.25023
doi: 10.1002/bit.25023
72 MASWANNA T, PHUNPRUCH S, LINDBLAD P, et al. Enhanced hydrogen production by optimization of immobilized cells of the green alga Tetraspora sp. CU2551 grown under anaerobic condition[J]. Biomass and Bioenergy, 2018, 111: 88-95. DOI:10.1016/j.biombioe.2018.01.005
doi: 10.1016/j.biombioe.2018.01.005
73 KOSOUROV S N, SEIBERT M. Hydrogen photoproduction by nutrient-deprived Chlamydomonas reinhardtii cells immobilized within thin alginate films under aerobic and anaerobic conditions[J]. Biotechnology and Bioengineering, 2010, 102(1): 50-58. DOI:10.1002/bit.22050
doi: 10.1002/bit.22050
74 LAURINAVICHENE T V, FEDOROV A S, GHIRARDI M L, et al. Demonstration of sustained hydrogen photoproduction by immobilized, sulfur-deprived Chlamydomonas reinhardtii cells[J]. International Journal of Hydrogen Energy, 2006, 31(5): 659-667. DOI:10.1016/j.ijhydene.2005. 05.002
doi: 10.1016/j.ijhydene.2005. 05.002
75 PHILIPPS G, HAPPE T, HEMSCHEMEIER A. Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii [J]. Planta, 2012, 235(4): 729-745. DOI:10.1007/s00425-011-1537-2
doi: 10.1007/s00425-011-1537-2
76 APARICIO P J, AZUARA M P, BALLESTEROS A, et al. Effects of light intensity and oxidized nitrogen sources on hydrogen production by Chlamydomonas reinhardtii [J]. Plant Physiology, 1985, 78(4): 803-806. DOI:10.1104/pp.78.4.803
doi: 10.1104/pp.78.4.803
77 BATYROVA K A, TSYGANKOV A A, KOSOUROV S N. Sustained hydrogen photoproduction by phosphorus-deprived Chlamydomonas reinhardtii cultures[J]. International Journal of Hydrogen Energy, 2012, 37(10): 8834-8839. DOI:10.1016/j.ijhydene.2012. 01.068
doi: 10.1016/j.ijhydene.2012. 01.068
78 BATYROVA K, GAVRISHEVA A, IVANOVA E, et al. Sustainable hydrogen photoproduction by phosphorus-deprived marine green microalgae Chlorella sp.[J]. International Journal of Molecular Sciences, 2015, 16(2): 2705-2716. DOI:10.3390/ijms16022705
doi: 10.3390/ijms16022705
79 VOLGUSHEVA A, KUKARSKIKH G, KRENDELEVA T, et al. Hydrogen photoproduction in green algae Chlamydomonas reinhardtii under magnesium deprivation[J]. RSC Advances, 2015, 5(8): 5633-5637. DOI:10.1039/C4RA12710B
doi: 10.1039/C4RA12710B
80 PAPAZI A, GJINDALI A I, KASTANAKI E, et al. Potassium deficiency, a "smart" cellular switch for sustained high yield hydrogen production by the green alga Scenedesmus obliquus [J]. International Journal of Hydrogen Energy, 2014, 39(34): 19452-19464. DOI:10.1016/j.ijhydene.2014.09.096
doi: 10.1016/j.ijhydene.2014.09.096
81 GHIRARDI M L, TOGASAKI R K, SEIBERT M. Oxygen sensitivity of algal H2-production[J]. Applied Biochemistry and Biotechnology, 1997, 63-65(1): 141-151. DOI:10.1007/BF02920420
doi: 10.1007/BF02920420
82 STAPLETON J A, SWARTZ J R. Development of an in vitro compartmentalization screen for high-throughput directed evolution of [FeFe] hydrogenases[J]. PloS One, 2010, 5(12): e15275. DOI:10.1371/journal.pone.0015275
doi: 10.1371/journal.pone.0015275
83 RÜHLE T, HEMSCHEMEIER A, MELIS A, et al. A novel screening protocol for the isolation of hydrogen producing Chlamydomonas reinhardtii strains[J]. BMC Plant Biology, 2008, 8: 107. DOI:10.1186/1471-2229-8-107
doi: 10.1186/1471-2229-8-107
84 XIONG J, SUBRAMANIAM S, GOVINDJEE. A knowledge-based three dimensional model of the Photosystem Ⅱ reaction center of Chlamydomonas reinhardtii [J]. Photosynthesis Research, 1998, 56(3): 229-254. DOI:10.1023/A:1006061918025
doi: 10.1023/A:1006061918025
85 SCOMA A, KRAWIETZ D, FARALONI C, et al. Sustained H2 production in a Chlamydomonas reinhardtii D1 protein mutant[J]. Journal of Biotechnology, 2012, 157(4): 613-619. DOI:10. 1016/j.jbiotec.2011.06.019
doi: 10. 1016/j.jbiotec.2011.06.019
86 BATYROVA K, HALLENBECK P C. Hydrogen production by a Chlamydomonas reinhardtii strain with inducible expression of photosystem Ⅱ[J]. International Journal of Molecular Sciences, 2017, 18(3): 647-661. DOI:10.3390/ijms18030647
doi: 10.3390/ijms18030647
87 HEMSCHEMEIER A, FOUCHARD S, COURNAC L, et al. Hydrogen production by Chlamydomonas reinhardtii: An elaborate interplay of electron sources and sinks[J]. Planta, 2008, 227(2): 397-407. DOI:10.1007/s00425-007-0626-8
doi: 10.1007/s00425-007-0626-8
88 PINTO T S, MALCATA F X, ARRABACA J D, et al. Rubisco mutants of Chlamydomonas reinhardtii enhance photosynthetic hydrogen production[J]. Applied Microbiology and Biotechnology, 2013, 97(12): 5635-5643. DOI:10.1007/s00253-013-4920-z
doi: 10.1007/s00253-013-4920-z
89 TOLLETER D, GHYSELS B, ALRIC J, et al. Control of hydrogen photoproduction by the proton gradient generated by cyclic electron flow in Chlamydomonas reinhardtii [J]. The Plant Cell, 2011, 23(7): 2619-2630. DOI:10.1105/tpc.111. 086876
doi: 10.1105/tpc.111. 086876
90 CHEN M, ZHANG J, ZHAO L, et al. Loss of algal proton gradient regulation 5 increases reactive oxygen species scavenging and H2 evolution[J]. Journal of Integrative Plant Biology, 2016, 58(12): 943-946. DOI:10.1111/jipb.12502
doi: 10.1111/jipb.12502
91 HWANG J H, KIM H C, CHOI J A, et al. Photoautotrophic hydrogen production by eukaryotic microalgae under aerobic conditions[J]. Nature Communications, 2014, 5: 3234. DOI:10.1038/ncomms4234
doi: 10.1038/ncomms4234
92 XU F Q, MA W M, ZHU X G. Introducing pyruvate oxidase into the chloroplast of Chlamydomonas reinhardtii increases oxygen consumption and promotes hydrogen production[J]. International Journal of Hydrogen Energy, 2011, 36(17): 10648-10654. DOI:10.1016/j.ijhydene.2011.05.130
doi: 10.1016/j.ijhydene.2011.05.130
93 WU S X, YAN G Y, XU L L, et al. Improvement of hydrogen production with expression of lba gene in chloroplast of Chlamydomonas reinhardtii [J]. International Journal of Hydrogen Energy, 2010, 35(24): 13419-13426. DOI:10.1016/j.ijhydene. 2009.11.118
doi: 10.1016/j.ijhydene. 2009.11.118
94 WU S X, XU L L, HUANG R, et al. Improved biohydrogen production with an expression of codon-optimized hemH and lba genes in the chloroplast of Chlamydomonas reinhardtii [J]. Bioresource Technology, 2011, 102(3): 2610-2616. DOI:10. 1016/j.biortech.2010.09.123
doi: 10. 1016/j.biortech.2010.09.123
95 NOONE S, RATCLIFF K, DAVIS R A, et al. Expression of a clostridial [FeFe]-hydrogenase in Chlamydomonas reinhardtii prolongs photo-production of hydrogen from water splitting[J]. Algal Research, 2016, 22: 116-121. DOI:10.1016/j.algal. 2016.12.014
doi: 10.1016/j.algal. 2016.12.014
96 DUCAT D C, SACHDEVA G, SILVER P A. Rewiring hydrogenase-dependent redox circuits in cyanobacteria[J]. Proceedings of the National Academy of Sciences, 2011, 108(10): 3941-3946. DOI:10.1073/pnas.1016026108
doi: 10.1073/pnas.1016026108
97 EILENBERG H, WEINER I, BEN-ZVI O, et al. The dual effect of a ferredoxin-hydrogenase fusion protein in vivo: Successful divergence of the photosynthetic electron flux towards hydrogen production and elevated oxygen tolerance[J]. Biotechnology for Biofuels, 2016, 9(1): 182-193. DOI:10.1186/s13068-016-0601-3
doi: 10.1186/s13068-016-0601-3
[1] 张建行,陈定云,雷祖培,李宏庆. 浙江省被子植物新资料[J]. 浙江大学学报(理学版), 2023, 50(3): 360-366.
[2] 张坤,张宏伟,张豪,梅旭东,马丹丹,金水虎. 浙江省石松类和蕨类植物的物种多样性研究[J]. 浙江大学学报(理学版), 2023, 50(2): 195-203.
[3] 鲁益飞,郑子洪,何芳,金水虎,金孝锋. 中国薹草属(莎草科)植物资料增补Ⅴ[J]. 浙江大学学报(理学版), 2022, 49(5): 642-650.
[4] 陈征海, 陈锋, 谢文远, 张芬耀, 李根有. 浙江植物区系新资料(Ⅱ)[J]. 浙江大学学报(理学版), 2021, 48(1): 93-99.