Please wait a minute...
浙江大学学报(理学版)  2022, Vol. 49 Issue (1): 76-84    DOI: 10.3785/j.issn.1008-9497.2022.01.011
地球科学     
基于动态模态分解的长江口海表温度时空分布特征重构研究
陈嘉星1,江迪2,张霄宇1,3,4()
1.浙江大学 地球科学学院,浙江 杭州 310027
2.浙江大学 信息与电子工程学院,浙江 杭州 310027
3.浙江大学 海南研究院,海南 三亚 572000
4.浙江大学海洋研究院,浙江 舟山 316000
Reconstruction of temporal and spatial distribution characteristics of sea surface temperature in the Yangtze River Estuary based on dynamic mode decomposition method
Jiaxing CHEN1,Di JIANG2,Xiaoyu ZHANG1,3,4()
1.School of Earth Sciences,Zhejiang University,Hangzhou 310027,China
2.College of Information Science & Electronic Engineering,Zhejiang University,Hangzhou 310027,China
3.Hainan Institute of Zhejiang University,Sanya 572000,Hainan Province,China
4.Ocean Academy,Zhejiang University,Zhoushan 316000,Zhejiang Province,China
 全文: PDF(1868 KB)   HTML( 12 )
摘要:

河口近海海域的海表温度分布特征对于深入理解海洋热力、动力过程及海气相互作用等自然过程及综合效应具有重要意义。卫星数据重构是精确获取动态大面积海表温度数据的重要手段,采用非线性系统的动态模态分解(dynamic mode decomposition,DMD)数据分析方法,利用2003年1月至2016年7月的MODIS\SST数据,经剔除异常数据、填补空白数据后,重构了2016年8月至2019年12月长江口海洋表面温度数据,并评估了重构效果。研究结果表明,在时序数据充足的情况下,DMD算法能很好地解决动态系统的采样问题。DMD结合正交三角(orthogonal right triangular,QR)分解算法能有效重构长江口的海表温度数据,平均均方根误差(root mean square error,RMSE)为0.007 6。进一步分析发现,无论是DMD算法还是DMD结合QR分解算法,还原结果精度都较高。

关键词: 长江口海洋表面温度动态模态分解数据重构    
Abstract:

The characteristics of sea surface temperature distribution in the estuarine and offshore areas are of great significance for understanding natural processes such as ocean thermal and dynamic processes and air sea interaction,as well as the comprehensive results under the influence of human activities.Satellite data reconstruction is an important means to obtain dynamic and accurate sea surface temperature data.This study adopted a dynamic mode decomposition (DMD) for nonlinear systems with sufficient data,It took MODIS\SST data from January 2003 to July 2016,after eliminating the abnormal data and filling in the blank data,the ocean surface temperature data of the Yangtze River Estuary from August 2016 to December 2019 were reconstructed,and the reconstruction effect was evaluated.The research shows that DMD algorithm can solve the sampling problem of dynamic system well provided that the time series data is sufficient.Our results show that DMD algorithm combined with orthogonal right triangular (QR) decomposition can effectively reconstruct the sea surface temperature data of the Yangtze River Estuary,and the average root mean square error (RMSE) is 0.007 6.Further analysis shows that both DMD algorithm and DMD algorithm combined with QR decomposition have high precision.

Key words: Yangtze River Estuary    sea surface temperature    dynamic mode decomposition    data reconstruction
收稿日期: 2020-11-11 出版日期: 2022-01-18
CLC:  P 731.11  
基金资助: 国家自然科学基金资助项目(40706057);国家重点研发计划重点专项(2018YFC1406600);浙江省重点研发计划择优委托项目(2021C01017);上海航天科技创新基金项目(SAST2019-047)
通讯作者: 张霄宇     E-mail: zhang_xiaoyu@zju.edu.cn
作者简介: 陈嘉星(1997—),ORCID:https://orcid.org/0000-0003-3251-1414,女,硕士,主要从事遥感图像处理与应用研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈嘉星
江迪
张霄宇

引用本文:

陈嘉星,江迪,张霄宇. 基于动态模态分解的长江口海表温度时空分布特征重构研究[J]. 浙江大学学报(理学版), 2022, 49(1): 76-84.

Jiaxing CHEN,Di JIANG,Xiaoyu ZHANG. Reconstruction of temporal and spatial distribution characteristics of sea surface temperature in the Yangtze River Estuary based on dynamic mode decomposition method. Journal of Zhejiang University (Science Edition), 2022, 49(1): 76-84.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2022.01.011        https://www.zjujournals.com/sci/CN/Y2022/V49/I1/76

图1  研究区域地理位置示意[16-17]
图2  典型观测站位效果对比
图3  用DMD算法分解长江口海域SST数据得到的前4个主要模态
图4  2016年8月长江口海域SST数据稀疏还原结果
图5  2016年8月的SST重构精度
图6  某2个典型观测站位重构前后对比
图7  长江口海域典型年份四季SST数据稀疏还原结果
1 闵建雄,丁咚,李广雪,等.利用Landsat卫星影像研究浙闽地区表层悬浮体的分布和迁移[J].海洋地质与第四纪地质,2017,37(2):44-55. DOI:10.16562/j.cnki.0256-1492.2017.02.005
MIN J X,DING D,LI G X,et al.Distribution and migration pattern of surficial suspended matter in Zhejiang and Fujian mud area detected by landsat satellite images[J].Marine Geology & Quaternary Geology,2017,37(2):44-55. DOI:10.16562/j.cnki. 0256-1492.2017.02.005
doi: 10.16562/j.cnki. 0256-1492.2017.02.005
2 郭甜甜,陈圣波,陆天启.基于MODIS数据的多时相海表温度反演:以海南岛西南部近海海域为例[J].热带海洋学报,2017,36(1):9-14. DOI:10.11978/2016032
GUO T T,CHEN S B,LU T Q.The inversion of multiple-phase SSTs based on the MODIS data:A case study on the southwest coastal waters of Hainan Island[J].Journal of Tropical Oceanography,2017,36(1):9-14. DOI:10.11978/2016032
doi: 10.11978/2016032
3 孙强,薛存金,刘敬一,等.全球海洋初级生产力与海洋环境要素时空关联模式挖掘分析[J].海洋环境科学,2020,39(3):340-352. doi:10.12111/j.mes20200303
SUN Q,XUE C J,LIU J Y,et al.Spatiotemporal association patterns between marine net primary production and environmental parameters in a view of data mining[J].Marine Environmental Science,2020,39(3):340-352. doi:10.12111/j.mes20200303
doi: 10.12111/j.mes20200303
4 周晓英,胡德宝,王赐震,等.长江口海域表层水温的季节、年际变化[J].中国海洋大学学报(自然科学版),2005,35(3):357-362. DOI:10.3969/j.issn.1672-5174.2005.03.002
ZHOU X Y,HU D B,WANG C Z,et al. Seasonal and interannual SST variations in the Yangtze River Estuary[J]. Periodical of Ocean University of China,2005,35(3):357-362. DOI:10.3969/j.issn.1672-5174. 2005.03.002
doi: 10.3969/j.issn.1672-5174. 2005.03.002
5 孙凡,于非,司广成,等.苏北浅滩及长江口海域春季海表面温度长期升温机制分析[J].海洋科学,2019,43(1):15-27. DOI:10.11759/hykx20181104001
SUN F,YU F,SI G C,et al. Long-term warming trend of sea surface temperature in spring in the Subei Bank and the Yangtze River Estuary[J]. Marine Sciences,2019,43(1):15-27. DOI:10.11759/hykx 20181104001
doi: 10.11759/hykx 20181104001
6 买佳阳,蒋雪中. 2000年以来长江河口海表温度变化MODIS分析[J].遥感学报,2015,19(5):818-826. DOI:10.11834/jrs.20154122
MAI J Y,JIANG X Z.Analysis of sea surface temperature variations in the Yangtze Estuarine waters since 2000 using MODIS[J].Journal of Remote Sensing,2015,19(5):818-826. DOI:10.11834/jrs.20154122
doi: 10.11834/jrs.20154122
7 何全军,王捷纯.FY-3C/VIRR数据中国周边海域区域SST反演算法开发[J].海洋环境科学,2020,39(5):798-803. doi:10.12111/j.mes.20190107
HE Q J,WANG J C.Development of regional SST algorithm for FY-3C/VIRR data in the seas around China[J].Marine Environmental Science,2020,39(5):798-803. doi:10.12111/j.mes.20190107
doi: 10.12111/j.mes.20190107
8 AI B,WEN Z,JIANG Y C,et al.Sea surface temperature inversion model for infrared remote sensing images based on deep neural network[J].Infrared Physics & Technology,2019,99:231-239. DOI:10.1016/j.infrared.2019.04.022
doi: 10.1016/j.infrared.2019.04.022
9 ALVERA-AZCáRATE A,BARTH A,RIXEN M,et al.Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions:Application to the Adriatic Sea surface temperature[J].Ocean Modelling,2005,9(4):325-346. DOI:10.1016/j.ocemod.2004.08.001
doi: 10.1016/j.ocemod.2004.08.001
10 BECKERS J M,RIXEN M.EOF calculations and data filling from incomplete oceanographic datasets[J].Journal of Atmospheric and Oceanic Technology,2003,20(12):1839-1856. DOI:10.1175/1520-0426(2003)020〈1839:ECADFF〉2.0.CO;2
doi: 10.1175/1520-0426(2003)020
11 SCHMID P J,SESTERHENN J.Dynamic mode decomposition of numerical and experimental data[C]//Sixty-First Annual Meeting of the APS Division of Fluid Dynamics. San Antonio:Texas,2008:208.
12 SCHMID P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics,2010,656:5-28. DOI:10.1017/S0022112010001217
doi: 10.1017/S0022112010001217
13 HUA J C,ROY S,MCCAULEY J L,et al.Using dynamic mode decomposition to extract cyclic behavior in the stock market[J].Physica A (Statistical Mechanics and Its Applications),2016,448:172-180. DOI:10.1016/j.physa.2015.12.059
doi: 10.1016/j.physa.2015.12.059
14 寇家庆,张伟伟.动力学模态分解及其在流体力学中的应用[J].空气动力学学报,2018,36(2):163-179. doi:10.7638/kqdlxxb-2017.0134
KOU J Q,ZHANG W W.Dynamic mode decomposition and its applications in fluid dynamics[J].Acta Aerodynamica Sinica,2018,36(2):163-179. doi:10.7638/kqdlxxb-2017.0134
doi: 10.7638/kqdlxxb-2017.0134
15 BUSINGER P,GOLUB G H.Linear least squares solutions by householder transformations[J].Numerische Mathematik,1965,7(3):269-276. DOI:10.1007/BF01436084
doi: 10.1007/BF01436084
16 杨德周,许灵静,尹宝树,等.黑潮跨陆架入侵东海年际变化的数值模拟[J].海洋与湖沼,2017,48(6):1318-1327. DOI:10.11693/hyhz20170500139
YANG D Z,XU L J,YIN B S,et al.Numerical study on inter-annual variation of cross-shelf intrusion of Kuroshio into East China Sea[J].Oceanologia et Limnologia Sinica,2017,48(6):1318-1327. DOI:10. 11693/hyhz20170500139
doi: 10. 11693/hyhz20170500139
17 李坤.黄东海陆架环流控制的悬浮物输运[D].北京:中国科学院大学,2016. doi:10.1016/j.margeo.2015.10.017
LI K. Suspended Sediment Transport Dominated by Shelf Circulation in the Yellow and East China Seas[D].Beijing:University of Chinese Academy of Sciences,2016. doi:10.1016/j.margeo.2015.10.017
doi: 10.1016/j.margeo.2015.10.017
18 许灵静.长江口及其邻近海域黑潮次表层水的入侵机制及其生态效应[D].北京:中国科学院大学,2019.
XU L J. Intrusion Mechanism and Ecological Effect of the Kuroshio Subsurface Water to the Changjiang Estuary and Its Adjacent Area[D]. Beijing: University of Chinese Academy of Sciences,2019.
19 吴晓丹,宋金明,李学刚.长江口邻近海域水团特征与影响范围的季节变化[J].海洋科学,2014(12):110-119. doi:10.11759/hykx20140305001
WU X D,SONG J M,LI X G.Ssonal variation of water mass characteristic and influence area in the Yangtze Estuary and its adjacent waters[J].Marine Sciences,2014(12):110-119. doi:10.11759/hykx20140305001
doi: 10.11759/hykx20140305001
20 刘玉洁,杨忠东. MODIS遥感信息处理原理与算法[M].北京:科学出版社,2001. doi:10.5194/amt-2019-116
LIU Y J,YANG Z D.Principle and Algorithm of MODIS Remote Sensing Information Processing[M]. Beijing:Science Press,2001. doi:10.5194/amt-2019-116
doi: 10.5194/amt-2019-116
No related articles found!