Please wait a minute...
浙江大学学报(理学版)  2019, Vol. 46 Issue (2): 164-171    DOI: 10.3785/j.issn.1008-9497.2019.02.004
Chinagraph 2018 会议专栏     
优化张力参数与边界条件的平面三次Cardinal样条
李军成1, 刘成志1, 易叶青2
1.湖南人文科技学院数学与金融学院,湖南娄底 417000
2.湖南人文科技学院信息学院,湖南娄底 417000
Planar cubic Cardinal spline with tension parameter and boundary condition optimization
Juncheng 1, Chengzhi LIU1, Yeqing YI2
1.College of Mathematics and Finance, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan Province, China
2.College of Information, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan Province, China
 全文: PDF(592 KB)   HTML  
摘要: 当数据点给定时,三次Cardinal样条的张力参数和边界条件均为自由变量,因此可对这些自由变量进行优化,以得到满足某种特定要求的最佳三次Cardinal样条。讨论了如何通过优化张力参数与边界条件使得构造的平面三次Cardinal样条尽可能光顺。首先,分析了三次Cardinal参数样条曲线形状的影响因素;然后,利用曲率变化能极小对三次Cardinal参数样条曲线的张力参数与边界条件进行优化,获得张力参数与边界条件的唯一解; 最后,给出了对应三次Cardinal样条函数的张力参数与边界条件的优化方法。实例表明,经曲率变化极小优化张力参数与边界条件后的三次Cardinal样条比三次Catmull-Rom样条更为光顺,插值效果更好。
关键词: 三次Cardinal样条张力参数边界条件曲率变化极小三次Catmull-Rom样条    
Abstract: The tension parameter and boundary condition of the cubic Cardinal spline can be optimized to obtain the best cubic Cardinal spline satisfying some specific requirements, because they are free variables when the data points are fixed. How to construct the smooth planar cubic Cardinal spline by optimizing the tension parameter and boundary condition is discussed in this paper. Firstly, the influence factors on the shape of the parametric cubic Cardinal spline curve are analyzed. Then, the tension parameter and boundary condition of the parametric cubic Cardinal parameter spline curve are optimized by the curvature variation minimization, and the unique solution of the tension parameter and the boundary condition is obtained. Finally, the corresponding method of the cubic Cardinal spline function is given. Some examples show that the cubic Cardinal spline obtained by optimizing the tension parameter and boundary condition is smoother, and the interpolation effect is better than that of the cubic Catmull-Rom spline.
Key words: cubic Cardinal spline    tension parameter    boundary condition    curvature variation minimization    cubic Catmull-Rom spline
收稿日期: 2018-08-14 出版日期: 2019-03-25
CLC:  TP391  
基金资助: 国家自然科学基金资助项目(61472135); 湖南省自然科学基金资助项目(2017JJ3124); 湖南省教育厅资助科研项目(18A415).
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李军成
刘成志
易叶青

引用本文:

李军成, 刘成志, 易叶青. 优化张力参数与边界条件的平面三次Cardinal样条[J]. 浙江大学学报(理学版), 2019, 46(2): 164-171.

Juncheng LI, Chengzhi LIU, Yeqing YI. Planar cubic Cardinal spline with tension parameter and boundary condition optimization. Journal of Zhejiang University (Science Edition), 2019, 46(2): 164-171.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2019.02.004        https://www.zjujournals.com/sci/CN/Y2019/V46/I2/164

1 HEARND, BAKERM P.Computer Graphics: C Version [M]. 2nd ed. Upper Saddle River: Prentice Hall, 1996.
2 YOONH S, PARKT H.Smooth path planning method for autonomous mobile robots using cardinal spline [J]. Transactions of the Korean Institute of Electrical Engineers, 2010, 59 (4): 803-808.
3 FANANIA, YUNIARTIA, SUCIATIN.Geometric feature extraction of batik image using Cardinal spline curve representation [J]. Telkomnika, 2014, 12(2): 397-404.DOI:10.12928/telkomnika.v12i2.1915
4 WUX Q, YANX K.The cubic C-Cardinal spline curve and surface [J]. Computer Engineering & Science, 2006, 28(2): 48-50.DOI:10.3969/j.issn.1007-130X.2006.02.015
5 SONGA P, TAOJ M, YID P, et al.Cubic trigonometric Cardinal interpolation spline with adjustable shape [J]. Mathematica Numerica Sinica, 2015, 37(1): 34-41.
6 WUX Q, HANX L, LUOS M.Cubic H-Cardinal spline curves and surfaces [J]. Journal of Engineering Graphics, 2008, 29(5): 83-88.DOI:10.3969/j.issn.1003-0158.2008.05.016
7 LIJ C, LIUC Z, YIY Q.C2 continuous quintic Cardinal spline and Catmull-Rom spline with shape factors [J]. Journal of Computer-Aided Design & Computer Graphics, 2016, 28(11): 1821-1831.
8 LIJ C.Curvature variation minimizing Cardinal spline curves [J]. Journal of Modeling and Optimization, 2018, 10(1): 31-36.DOI:10.32732/jmo.2018.10.1.31
9 GONZALEZR C , WOODSR E, EDDINSS L.Digital Image Processing Using MATLAB [M]. Upper Saddle River: Prentice Hall, 2004.DOI:http://dx.doi.org/10.9774/GLEAF.978-1-909493-38-4_2
10 DEROSET D, BARSKYB A.Geometric continuity, shape parameters, and geometric constructions for Catmull-Rom splines [J]. ACM Transactions on Graphics, 1988(7): 1-41.DOI:10.1145/42188.42265
11 YUKSELC, SCHAEFERS, KEYSERJ.Parameterization and applications of Catmull–Rom curves [J]. Computer-Aided Design, 2011, 43(7): 747-755.DOI:10.1016/j.cad.2010.08.008
12 SCARPINITIM, COMMINIELLOD, PARISIR, et al.Nonlinear spline adaptive filtering [J]. Signal Processing, 2013, 93(4): 772-783.DOI:10.1016/j.sigpro.2012.09.021
13 HOFERM, POTTMANNH.Energy-minimizing splines in manifolds [J]. ACM Transaction on Graphics, 2004, 23(3): 284-293.DOI:10.1145/1015706.1015716
14 FANW, LEE C H, CHENJ H. A realtime curvature-smooth interpolation scheme and motion planning for CNC machining of short line segments [J]. International Journal of Machine Tools and Manufacture, 2015, 96: 27-46.DOI:10.1016/j.ijmachtools.2015.04.009
15 LUL Z, JIANGC K, HUQ Q.Planar cubic G1 and quintic G2 Hermite interpolations via curvature variation minimization [J]. Computers & Graphics, 2017, 70: 92-98.DOI:10.1016/j.cag.2017.07.007
16 JAKLI?G, ?AGARE.Curvature variation minimizing cubic Hermite interpolants [J]. Applied Mathematics and Computation, 2011, 218(7): 3918-3924. DOI:10.1016/j.amc.2011.09.039
17 JAKLI?G, ?AGARE.Planar cubic G1 interpolatory splines with small strain energy [J]. Journal of Computational and Applied Mathematics, 2011, 235(8): 2758-2765.DOI: 10.1016/j.cam.2010.11.025
18 AHN Y J, HOFFMANNC, ROSENP.Geometric constraints on quadratic Bézier curves using minimal length and energy [J]. Journal of Computational and Application Mathematics, 2014, 255: 887-897.DOI:10.1016/j.cam.2013.07.005
19 LIJ C.Planar T-Bézier curve with approximate minimum curvature variation [J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2018, 12(1): 29.DOI:10.1299/jamdsm.2018jamdsm0029
20 FARING.Geometric Hermite interpolation with circular precision [J]. Computer-Aided Geometric Design, 2008, 40(4): 476-479.DOI:10.1016/j.cad.2008.01.003
21 LUL Z.A note on curvature variation minimizing cubic Hermite interpolants [J]. Applied Mathematics and Computation, 2015, 259: 596-599.DOI:10.1016/j.amc.2014.11.113
[1] 李远飞,肖胜中,曾鹏,欧阳柏平. 非线性边界条件下拟线性瞬态方程组的Phragmén-Lindelöf型二择一结果[J]. 浙江大学学报(理学版), 2022, 49(6): 662-669.
[2] 石金诚, 李远飞. 有界区域内相互作用的Forchheimer-Darcy流体方程组解的结构稳定性[J]. 浙江大学学报(理学版), 2021, 48(1): 57-63.
[3] 马满堂, 贾凯军. 带非线性边界条件的二阶奇异微分系统正解的存在性[J]. 浙江大学学报(理学版), 2019, 46(6): 686-690.
[4] 王学彬. 混合边界条件下广义二维多项时间分数阶扩散方程的解析解[J]. 浙江大学学报(理学版), 2016, 43(4): 406-410.