Please wait a minute...
浙江大学学报(理学版)  2022, Vol. 49 Issue (6): 662-669    DOI: 10.3785/j.issn.1008-9497.2022.06.003
数学与计算机科学     
非线性边界条件下拟线性瞬态方程组的Phragmén-Lindelöf型二择一结果
李远飞1,肖胜中2,曾鹏1,欧阳柏平1
1.广州华商学院,广东 广州 511300
2.广东农工商职业技术学院, 广东 广州 510507
Phragmén-Lindelöf type alternative results for quasilinear transient equations with nonlinear boundary conditions
Yuanfei LI1,Shengzhong XIAO2,Peng ZENG1,Baiping OUYANG1
1.Guangzhou Huashang College,Guangzhou 511300,China
2.Guangdong AIB College,Guangzhou 510507,China
 全文: PDF(485 KB)   HTML( 6 )
摘要:

考虑了一类定义在三维半无穷柱体上的拟线性方程组,其中假设方程的解在柱体的有限端和侧面满足非齐次条件。定义了“能量”表达式,通过限制非线性项,利用微分不等式技术, 推导了一阶微分不等式,解此不等式得到二择一结果,即证明了“能量”随与有限端距离的增大要么呈指数式(多项式)增加,要么呈指数式(多项式)衰减。同时,在衰减情形下得到了全能量的上界。

关键词: 拟线性方程非线性边界条件Phragmén-Lindel?f型二择一空间衰减性    
Abstract:

In this paper, we consider a class of quasilinear equations defined on a three-dimensional semi-infinite cylinder, in which the solutions of the equations are assumed to satisfy the nonhomogeneous conditions on both the finite end and the side of the cylinder. An expression of "energy" is defined. By limiting the nonlinear terms and making full use of the differential inequality technique, we obtain a first order differential inequality. By solving this inequality, we prove the alternative results, i.e., the "energy" increases exponentially (polynomial) or decays exponentially (polynomial) with the distance from the finite end. Finally, in the case of decay, we get the upper bound of total energy.

Key words: quasilinear equation    nonlinear conditions    Phragmén-Lindel?f type alternative    spatial decay
收稿日期: 2020-04-13 出版日期: 2022-11-23
CLC:  O175.29  
基金资助: 广东省普通高校创新团队项目(2020WCXTD008)
作者简介: 李远飞(1982—),ORCID:https://orcid.org/0000-0002-9314-4104,男,博士,教授,主要从事偏微分方程研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李远飞
肖胜中
曾鹏
欧阳柏平

引用本文:

李远飞,肖胜中,曾鹏,欧阳柏平. 非线性边界条件下拟线性瞬态方程组的Phragmén-Lindelöf型二择一结果[J]. 浙江大学学报(理学版), 2022, 49(6): 662-669.

Yuanfei LI,Shengzhong XIAO,Peng ZENG,Baiping OUYANG. Phragmén-Lindelöf type alternative results for quasilinear transient equations with nonlinear boundary conditions. Journal of Zhejiang University (Science Edition), 2022, 49(6): 662-669.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2022.06.003        https://www.zjujournals.com/sci/CN/Y2022/V49/I6/662

1 A J C B de SAINT-VENANT. Mémoiresur la flexion des prismes[J]. Journal de Mathematiques Pures et Appliquees, 1856, 1(2):89-189.
2 LIU Y, LI Y F, LIN Y W, et al. Spatial decay bounds for the channel flow of the Boussinesq equations[J]. Journal of Mathematical Analysis and Applications, 2011, 381(1): 87-109. DOI:10.1016/j.jmaa.2011.02.066
doi: 10.1016/j.jmaa.2011.02.066
3 LIU Y, QIU H, LIN C H. Spatial decay bounds of solutions to the Navier-Stokes equations for transient compressible viscous flow[J]. Journal of the Korean Mathematical Society, 2011, 48 (6): 1153-1170. DOI:10.4134/JKMS.2011.48.6.1153
doi: 10.4134/JKMS.2011.48.6.1153
4 LI Y F, LIN C H. Spatial decay for solutions to 2-D Boussinesq system with variable thermal diffusivity[J]. Acta Applicandae Mathematicae, 2018, 154(1): 111-130. DOI:10.1007/s10440-017-0136-z
doi: 10.1007/s10440-017-0136-z
5 AMES K A, PAYNE L E, SCHAEFER P W. Spatial decay estimates in time-dependent Stokes flow[J]. SIAM Journal on Mathematical Analysis,1993, 24(6): 1395-1413. DOI:10.1137/0524081
doi: 10.1137/0524081
6 KNOPS R J, QUINTANILLA R. Spatial decay in transient heat conduction for general elongated regions[J].Quarterly of Applied Mathematics,2017, 76: 611-625. DOI:10.1090/qam/1497
doi: 10.1090/qam/1497
7 QUINTANILLA R. Some remarks on the fast spatial growth/decay in exterior regions[J]. Zeitschrift für angewandte Mathematik und Physik, 2019, 70: 83. DOI: 10.1007/s00033-019-1127-x
doi: 10.1007/s00033-019-1127-x
8 HORGAN C O, PAYNE L E. Phragmén-Lindelöf type results for harmonic functions with nonlinear boundary conditions[J]. Archive for Rational Mechanics & Analysis, 1993, 122: 123-144. DOI:10.1007/BF00378164
doi: 10.1007/BF00378164
9 LIN C, PAYNE L E. Phragmén-Lindelöf alternative for a class of quasilinear second order parabolic problems[J]. Differential and Integral Equations,1995, 8(3): 539-551.
10 LIN C, PAYNE L E. A Phragmén-Lindelöf type results for second order quasilinear parabolic equation in R 2 [J]. Zeitschrift für angewandte Mathematik und Physik, 1994, 45: 294-311. DOI:10.1007/BF00943507
doi: 10.1007/BF00943507
11 LESEDUARTE M C, QUINTANILLA R. Phragmén-Lindelöf alternative for the Laplace equation with dynamic boundary conditions[J]. Journal of Applied Analysis and Computation, 2017, 7(4):1323-1335. DOI: 10.11948/2017081
doi: 10.11948/2017081
12 PAYNE L E, SCHAEFER P W. Some Phragmén-Lindelöf type results for the biharmonic equation[J]. Zeitschrift für angewandte Mathematik und Physik, 1994, 45: 414-432. DOI:10.1007/BF00945929
doi: 10.1007/BF00945929
13 LIN C H. A Phragmén-Lindelöf alternative for a class of second order quasilinear equations in R 3 [J]. Acta Mathematica Scientia, 1996, 16(2): 181-191. DOI:10.1016/S0252-9602(17)30793-2
doi: 10.1016/S0252-9602(17)30793-2
14 LIU Y, LIN C H. Phragmén-Lindelöf type alternative results for the stokes flow equation[J]. Mathematical Inequalities & Applications, 2006, 9(4): 671-694. doi:10.7153/mia-09-60
doi: 10.7153/mia-09-60
15 李远飞. 海洋动力学中二维黏性原始方程组解对热源的收敛性[J].应用数学和力学,2020, 41(3): 339-352. DOI:10.21656/1000-0887.400176
LI Y F. Convergence results on heat source for 2D viscous primitive equations of ocean dynamics[J]. Applied Mathematics and Mechanics, 2020, 41(3): 339-352. DOI:10.21656/1000-0887.400176
doi: 10.21656/1000-0887.400176
16 李远飞. Robin边界条件下更一般化的非线性抛物问题全局解的存在性[J]. 应用数学学报, 2018, 41(2): 257-267. DOI:10.12387/C2018020
LI Y F. Blow-up and global existence of the solution to some more general nonlinear parabolic problems with Robin boundary conditions[J]. Acta Mathematicae Applicatae Sinica, 2018, 41(2): 257-267. DOI:10.12387/C2018020
doi: 10.12387/C2018020
[1] 马满堂, 贾凯军. 带非线性边界条件的二阶奇异微分系统正解的存在性[J]. 浙江大学学报(理学版), 2019, 46(6): 686-690.