Please wait a minute...
浙江大学学报(理学版)  2019, Vol. 46 Issue (1): 65-77    DOI: 10.3785/j.issn.1008-9497.2019.01.009
生命科学     
韭山列岛海域虾类群落结构与海洋环境因子的关系
卢衎尔1,2, 朱文斌1,2, 梁君1,2, 李德伟1,2, 戴乾1,2, 卢占晖1,2, 徐开达1,2
1.浙江省海洋水产研究所 渔业资源与生态研究室,浙江 舟山 316021
2.浙江省海洋渔业资源可持续利用技术研究重点实验室,浙江 舟山 316021
The relationship between shrimps community structure and environmental factors in Jiushan Islands waters
LU Kaner1,2, ZHU Wenbing1,2, LIANG Jun1,2, LI Dewei1,2, DAI Qian1,2, LU Zhanhui1,2, XU Kaida1,2
1.Marine Fishery Research Institute of Zhejiang Research Department of Fisher Resources and Ecology, Zhoushan 316021, Zhejiang Province, China
2.Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, Zhejiang Province, China
 全文: PDF(1281 KB)   HTML  
摘要: 根据韭山列岛海域2015年11月(秋)、2016年2月(冬)、5月(春)、8月(夏)的调查资料,运用相对重要性指数(index of relative importance, IRI)、冗余分析(redundancy analysis, RDA)、数量生物量曲线(Abundance-biomass comparison curve,简称ABC曲线)及W统计量(W-statistics)等方法,分析了该海域优势种虾类及其与环境因子的关系。结果表明,保护区共调查到暖温、暖水性虾类16种,隶属于8科12属;其中,各季节优势种(IRI > 1 000)变化明显。虾类相对资源密度呈春、秋季高,夏、冬季低的季节性分布。秋季主要优势种为安氏白虾(Exopalaemon annandalei)和葛氏长臂虾(Palaemon gravieri),虾类群落的分布主要受底层水温影响(r2 = 0.726 2,P = 0.001);冬季优势种主要为鲜明鼓虾(Alpheus distinguendus)、葛氏长臂虾和日本鼓虾(Alpheus japonicus),此季节虾类的分布主要受水深的影响(r2 = 0.543 7,P = 0.009);春季优势种为日本鼓虾和细巧仿对虾(Parapenaeopsis tenella),此时物种的分布与表层环境因子关系密切;夏季优势种以哈氏仿对虾(Parapenaeopsis hardwickii)和中华管鞭虾(Solenocera crassicornis)为主,此时研究海域环境较为稳定,环境因子整体对虾类群落的分布影响显著(P = 0.008)。4个季节W统计值均小于1,其变化范围为-1.772×10-3~-2.47×10-4。秋、冬和春季数量优势度曲线高于生物量优势度曲线,表明虾类群落受干扰较为严重;而夏季两曲线相交,受干扰情况较另外3个季节有所好转。通过比较数量、生物量优势度曲线斜率,还可以推测虾类的体型大小:当相邻两排序物种在生物量优势度曲线上对应值连线的斜率大于数量优势度曲线上对应值连线的斜率时,该物种个体相对较大,反之较小。进而可推知:当物种数量足够多时,可通过比较某一物种在生物量优势度曲线和数量优势度曲线上对应处切线的斜率判断个体的相对大小。
关键词: 韭山列岛海域虾类群落结构相对重要性指数RDA分析ABC曲线    
Abstract: Based on the shrimps data (species, numbers and weights) collected in the Jiushan Islands waters in November (autumn) 2015 and February (winter), May (spring) and August (summer) of 2016, we jointly apply the quantitative and qualitative methods, including the index of relative importance (IRI), redundancy analysis (RDA), W-statistics, RDA ordination and abundance-biomass comparison curve (ABC curve), to explore the relationship between shrimps community and marine environment. The Results show that there are 16 warm-temperate and warm-water species in total captured in the investigated area, belonging to 8 families and 12 genera; The relative shrimp resources vary with season, shrimp biomass in spring and autumn are higher compared to that in summer and winter. Dominant species (IRI > 100 0) vary with season as well: Exopalaemon annandalei and Palaemon gravieri are dominant species in autumn. RDA ordination result shows that the bottom seawater temperature is the major impact factor (r2 = 0.726 2,P = 0.001) to the spread of shrimps community. In winter, Alpheus distinguendus, Palaemon gravieri and Alpheus japonicus are the dominant species, and depth is the predominant impact factor (r2 = 0.543 7,P = 0.009) according to RDA ordination result. Dominant species in spring are Alpheus japonicus and Parapenaeopsis tenella, and the RDA ordination result also indicates that surface marine environment factors are the most influential factors. Parapenaeopsis hardwickii and Solenocera crassicornis are the dominant species in summer, and the homogeneity of marine environment in coastal waters affects the spread of shrimps community (P = 0.008). The W-statistics values of each season are between -1.772×10-3 and -2.47×10-4. In autumn, winter and spring, the abundance curve is above the biomass curve, indicating that shrimps community is under inferences. The intersection of abundance and biomass curves in summer shows an upward turn of interferences. The size of shrimp species could be inferred by slope from ABC. The size of one species was relatively bigger when the slope of the line connecting the corresponding values of the adjacent two species on the biomass curve is greater than that of the line connecting the corresponding values on the abundance curve, and vice versa. Furthermore, when the number of species increases, the size of one species can be inferred by comparing the slopes of tangent lines connecting the corresponding values on biomass and abundance curves.
Key words: Jiushan Islands waters    shrimps community structure    index of relative importance (IRI)    redundancy analysis (RDA)    abundance-biomass comparison curve (ABC)
收稿日期: 2018-06-04 出版日期: 2019-01-25
CLC:  S932.5+1  
基金资助: 农业部项目(农财发[2017]36号);浙江省科技研发项目(2019C02056);国家重点研发计划资助项目(2018YFD0900904);国家自然科学基金资助项目(31702346);浙江省科技计划项目(2017C32031);浙江省科技厅项目(2017F50015).
作者简介: 韭山列岛海域虾类群落结构与海洋环境因子的关系
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
卢衎尔
朱文斌
梁君
李德伟
戴乾
卢占晖
徐开达

引用本文:

卢衎尔, 朱文斌, 梁君, 李德伟, 戴乾, 卢占晖, 徐开达. 韭山列岛海域虾类群落结构与海洋环境因子的关系[J]. 浙江大学学报(理学版), 2019, 46(1): 65-77.

LU Kaner, ZHU Wenbing, LIANG Jun, LI Dewei, DAI Qian, LU Zhanhui, XU Kaida. The relationship between shrimps community structure and environmental factors in Jiushan Islands waters. Journal of ZheJIang University(Science Edition), 2019, 46(1): 65-77.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2019.01.009        https://www.zjujournals.com/sci/CN/Y2019/V46/I1/65

1 HEZ T, ZHANGH L, XUK D, et al. Diversity and distribution of benthic organisms in rocky intertidal zone of Jiushan Islands Nature Reserve [J]. Fishery Information & Strategy, 2012, 27(2): 151-156. DOI: 10.13233/j.cnki.fishis.2012.02.001
2 ZHANGH L, XUK D, HEZ T, et al.Analysis on the condition of fishery resources in the sea area around the Jiushan Archipelago[J]. Marine Fisheries, 2008, 30(2): 105-113. DOI: 10.13233/j.cnki.mar.fish.2008.02.003
3 XIAL J, CHENW D, ZHENGJ, et al.Species composition and quantitative distribution of shrimp in the Nanji Islands marine conservation[J]. Journal of Fishery Sciences of China, 2016, 23(3): 648-660. DOI: 10.3724/SP.J.1118.2016.15326
4 ZHANGY Z, HEZ T.Analysis on the fishery resources in the sea area of Jiushan Archipelago Oceanic Ecology Reserve during spring and summer[J]. Journal of Zhejiang Ocean University (Natural Science Edition), 2013, 32(4): 292-298. DOI: 10.3969/j.issn.1008-830X.2013.04.002
5 SUNL H, LIX F, WANGY N, et al.The species and distribution of macrobenthos in the Nanjiushan Sea area[J]. Ecological Science, 2014, 33(1): 32-37.
6 General Administration of Quality Supervision, Inspection and Qurantine of the People's Republic of China.Specifications for Oceanographic Survey-Part 6: Marine Biological Survey[M]. Beijing: Standards Press of China, 2007.
7 LIUR Y.Checklist of Marine Biota of China Seas[M]. Beijing: Science Press, 2008.
8 PINKASL, OLIPHANTM S, IVERSONI L K.Food habits of albacore, Bluefin tuna, and bonito in California waters[J]. Fish Bulletin, 1971, 1971(152): 1-105.
9 WARWICKR M.A new method for detecting pollution effects on marine macrobenthic communities[J]. Marine Biology, 1986, 92(4): 557-562. DOI: 10.1007/BF00392515
10 WARWICKR M, CLARKEK R.Relearning the ABC: taxonomic changes and abundance/biomass relationships in disturbed benthic communities[J]. Marine Biology, 1994, 118(4): 739-744. DOI: 10.1007/BF00347523
11 CLARKEK R, WARWICKR M.Change in marine communities: An approach to statistical analysis and interpretation[J]. Mount Sinai Journal of Medicine New York, 2001, 40(5): 689-92.
12 YEMANED, FIELDJ G, LESLIER W.Exploring the effects of fishing on fish assemblages using Abundance Biomass Comparison (ABC) curves[J]. ICES Journal of Marine Science, 2005, 62(3): 374-379. DOI: 10.1016/j.icesjms.2005.01.009
13 TeamR. R: Core A language and environment for statistical computing.R Foundation for Statistical Computing, Vienna, Austria, 2018[CP/OL]. https: //www.R-project.org/.
14 WICHHAMH.Ggplot2: Elegant Graphics for Data Analysis[M]. New York: Springer-Verlag, 2009. DOI: 10.1007/978-0-387-98141-3
15 LAIJ S, MIX C. Ecological ordination analysis based on vegan library in R[C]// Conference Proceedings of the 9th National Biodiversity and Sustainable Development Seminar. Beijing: China Meteorological Press, 2010,11: 332-343.
16 BRAAK C J FTER.Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis[J]. Ecology, 1986, 67(5): 1167-1179. DOI: 10.2307/1938672
17 BRAAK C J FTER, PRENTICEI C.A theory of gradient analysis[J]. Academic Press, 1988, 1988(18): 271-317. DOI: 10.1016/S0065-2504(08)60183-X
18 OKSANENJ, BLANCHETF G, FRIENDLYM, et al.Vegan: Community Ecology Package. R package version 2.4-4, 2017[CP/OL]. https: //CRAN.R-project.org/package=vegan.
19 ?MILAUERP, LEP?J.Multivariate Analysis of Ecological Data Using Canoco 5[M]. 2nd ed. New York: Cambridge University Press, 2014.
20 SONGC, HOUJ L, ZHAOF, et al. Macrobenthos community structure and its relationship with environment factors in the offshore wind farm of the East China Sea Bridge in spring and autumn[J]. Marine Fisheries, 2017, 39(1): 21-29. DOI: 10.13233/j.cnki.mar.fish.2017.01.003
21 XUJ P, YANGS Y.A discussion of environmental resources and its development in Sanmen Bay[J]. Ocean Development and Management, 1993, 1993(2): 14–16.
22 XIEX, YUC G, ZHENGJ, et al.Community structure and relationship with environment in shrimp in Pishan waters at Yushan fishing ground[J]. Journal of Dalian Ocean University, 2017, 32(6): 713-723. DOI: 10.16535/j.cnki.dlhyxb.2017.06.013
23 QIH M, SUNY, XUZ L, et al. Shrimp community structure and its influential factors in the Jiaojiang River estuary during spring and autumn[J]. Chinese Journal of Applied Ecology, 2013, 24(12), 3546–3552.
24 CHENW F, PENGX, WANGZ H, et al.Community structure characteristics of fishes in the coastal area of south Zhejiang during autumn and winter[J]. Ocean Development and Management, 2017, 34(11): 111–119. DOI: 10.3969/j.issn.1005-9857.2017.11.021
25 PANGZ W, XUB D, CHENX G, et al. Community structure and diversity of shrimp assemblages in the central waters of Jiaozhou Bay, China[J]. Journal of Fishery Sciences of China, 2013, 20(2): 361-371. DOI: 10.3724/SP.J.1118.2013.00361
26 XUJ J, YANGD W, LEIZ D, et al.The test of variations of the amount of precipitation and runoff of the Yangtze River[J]. Yangtze River, 2006, 37(9): 63-67. DOI: 10.3969/j.issn.1001-4179.2006.09.022
27 RENZ H, ZHENGL, LIF, et al.Community structure and diversity of shrimp in Laizhou Bay[J]. Marine Fisheries, 2014, 36(3): 193-201. DOI: 10.3969/j.issn.1004-2490.2014.03.001
28 TANGF H, WUY M, FANW, et al.Preliminary discussion on phytoplankton distribution and its relation to the runoff in the Yangtze River estuary[J]. Ecology and Environment Sciences, 2010, 19(12): 2934-2940.
29 LIM Y, WANGC L. On biology features of offshore shrimp (Parapenaeopsis hardwickii) in Zhejiang[C]// Conference Proceedings of the 14th Member Representatives Congress and 65th Anniversary of Chinese Zoological Society. Zhengzhou: Zoological Society of China, 1999: 368-372.
30 SONGH T, YUC G, XUEL J, et al. Commercial Shrimps and Crabs in the East China Sea[M]. Beijing: China Ocean Press, 2006.
31 SONGH T, YAOG Z, YUC G, et al. Study on the biomass distribution and biological characteristic of Solenocera crassioncornis in East China Sea[J]. Journal of Zhejiang Ocean University (Natural Science Edition), 2003, 22(4): 305-308. DOI: 10.3969/j.issn.1008-830X.2003.04.002
32 SONGH T, YUC G, XUEL J. Fishery Biology of Commercial Shrimp and Crab Species in the East China Sea[M]. Beijing: China Ocean Press, 2012.
33 SONGH T, DINGT M.The present state of shrimp trawling fishery and suggestions on building up no shrimp-trawling season in East China Sea[J]. Journal of Zhejiang College of Fisheries, 1997(4): 12-17.
34 WUC W, WANGW H.A study of biology and ecological distribution of Exopalaemon annandalei in Hangzhou Bay[J]. Journal of Zhejiang College of Fisheries, 1993, 1993(1): 21-31.
35 DINGT M, SONGH T.The study on biology of Palaemon gravieri in East China Sea[J]. Journal of Zhejiang Ocean University (Nature Science Edition), 2002, 21(1): 1-5. DOI: 10.3969/j.issn.1008-830X.2002.01.001
36 QUX N, SHUZ Y, XIEX, et al.The species composition and distribution characteristics of Shrimps in Huangdayang of Zhoushan[J]. Journal of Zhejiang Ocean University (Natural Science Edition), 2013, 32(4): 285-291. DOI: 10.3969/j.issn.1008-830X.2013. 04.001
37 LIUX Q, HOUY Y, YINB S, et al.The dynamic of circulation and temperature-salinity structure in the Changjiang Mouth and its adjacent marine area Ⅲ. The temperature structure[J]. Oceanologia et Limnologia Sinica, 2015, 46(3): 526-533. DOI: 10.11693/hyhz20140900261
38 ZHAOQ B, SUNJ, LID, et al. Seasonal changes of the phytoplankton along hypoxia area and adjacent waters in the East China Sea[J]. Acta Ecologica Sinica, 2015, 35(7): 2366-2379. DOI: 10.5846/stxb201306021273
39 YANGS, SHIX Y, ZHANGC S, et al. The seasonal changes of biomass of phytoplankton in the Yangtze River estuary[C]// The 10th National Member Representatives Congress and Academic Senminar of Oceanologia et Limnologia Sinica. Qingdao: Chinese Society Oceanology and Limnology, 2012.
40 QIJ F.The East China Sea Water Body Features and the Kuroshio and the East China Sea Shelf Water Exchange Study[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2014.
41 BLANCHARDF, LELOC’HF, HILYC, et al.Fishing effects on diversity, size and community structure of the benthic invertebrate and fish megafauna on the Bay of Biscay coast of France[J]. Marine Ecology Progress Series, 2004, 280(4): 249-260. DOI: 10.3354/meps280249
42 LIS F.Status of fish community in East China Sea using the method of abundance-biomass comparison (ABC) curve[J]. Journal of Fishery Sciences of China, 2008, 15(1): 136-144. DOI: 10.3321/j.issn: 1005-8737.2008.01.018
43 JINX, TANGQ.Changes in fish species diversity and dominant species composition in the Yellow Sea[J]. Fisheries Research, 1996, 26(3): 337-352. DOI: 10.1016/0165-7836(95)00422-X
44 SVED?NGH.The inshore demersal fish community on the Swedish Skagerrak coast, regulation by recruitment from offshore sources[J]. ICES Journal of Marine Science, 2003, 60(1): 23-31. DOI: 10.1006/jmsc.2002.1329
No related articles found!