Please wait a minute...
Chinese Journal of Engineering Design  2025, Vol. 32 Issue (2): 232-239    DOI: 10.3785/j.issn.1006-754X.2025.04.155
Optimization Design     
Preparation of drug-carrying layer of esophageal stent based on piezoelectric inkjet printing technology
Yuejing ZHENG1,2(),Wenfeng LIANG1,Tingting WANG3,Song LI2,4,Huixuan ZHU2,4,Kai ZHANG3()
1.School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110186, China
2.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
3.Endoscopy Center of Gastroenterology Department, Shengjing Hospital of China Medical University, Shenyang 110004, China
4.University of Chinese Academy of Sciences, Beijing 100049, China
Download: HTML     PDF(2323KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Esophageal stenosis is one of the main symptoms of esophageal cancer. Currently, the drug-carrying esophageal stents are widely used in the clinical treatment of esophageal stenosis. At present, the main preparation methods of drug-carrying esophageal stents are dip coating method and spray coating method, but the materials of the drug-carrying layer of esophageal stent prepared by these methods were limited and the coating accuracy is not high. To solve the above problems, a method for preparing the drug-carrying layer of esophageal stent based on piezoelectric inkjet printing technology is proposed. Firstly, the finite element simulation method was used to design the temperature control box for the piezoelectric inkjet printing platform and optimize the temperature control parameters, so as to promote the solidification of printing materials and broaden the materials used in the drug-carrying layer. Then, the influence of voltage amplitude, slope parameter and pulse width of the driving waveform for piezoelectric inkjet heads on the droplet diameter was deeply explored, and the driving waveform parameters were optimized to improve the coating accuracy of drug-carrying layer. Finally, the printing experiment for drug-carrying layer was conducted to verify the accuracy and effectiveness of the simulation design of temperature control box and the optimization of driving waveform parameters. The results showed that the GelMA (gelatin methacryloyl) hydrogel had a good forming effect at -4 to 4 ℃. The droplet diameter was positively correlated with the voltage amplitude and slope parameters of the driving waveform, but there was an optimal pulse width. Under the premise of ensuring printing accuracy, the rising edge voltage amplitude was determined to be 30 V, the rising edge slope and the falling edge slope were both 7 V/ms, and the pulse width was 1.5 ms. Using this driving waveform, a uniform drug-carrying layer of esophageal stent with good curing and forming effect and high accuracy was successfully printed, which could provide a new idea for the preparation of drug-carrying esophageal stents.



Key wordsesophageal stent      inkjet printing      driving waveform      droplet diameter      GelMA hydrogel     
Received: 05 July 2024      Published: 06 May 2025
CLC:  TP 391.7  
Corresponding Authors: Kai ZHANG     E-mail: 1078594170@qq.com;zhangkaidoctor@163.com
Cite this article:

Yuejing ZHENG,Wenfeng LIANG,Tingting WANG,Song LI,Huixuan ZHU,Kai ZHANG. Preparation of drug-carrying layer of esophageal stent based on piezoelectric inkjet printing technology. Chinese Journal of Engineering Design, 2025, 32(2): 232-239.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2025.04.155     OR     https://www.zjujournals.com/gcsjxb/Y2025/V32/I2/232


基于压电喷墨打印技术的食管支架载药层制备

食管狭窄是食管癌的主要症状之一,目前载药食管支架被广泛应用于食管狭窄的临床治疗。现阶段,载药食管支架的制备方法主要为浸涂法与喷涂法,但该类方法所制备的食管支架载药层的材料受限且覆膜精度不高。为解决上述问题,提出了一种基于压电喷墨打印技术的食管支架载药层制备方法。首先,运用有限元仿真法设计了压电喷墨打印平台的温控箱并优化了温控参数,以促进打印材料固化成形,拓宽载药层的使用材料。然后,深入探究了压电喷头驱动波形的电压幅值、斜率参数及脉冲宽度对液滴直径的影响,并优化了驱动波形参数,以提高载药层的覆膜精度。最后,开展载药层打印实验,以验证温控箱仿真设计与驱动波形参数优化的准确性与有效性。实验结果表明,GelMA(gelatin methacryloyl,甲基丙烯酰化明胶)水凝胶在-4~4 ℃时的成形效果良好;液滴直径与驱动波形的电压幅值和斜率参数均呈正相关,但存在最佳脉冲宽度。在确保打印精度的前提下,确定了上升沿电压幅值为30 V,上升沿斜率和下降沿斜率均为7 V/ms,脉冲宽度为1.5 ms,并利用该驱动波形成功打印了固化成形效果良好、精度高且均匀的食管支架载药层,这可为载药食管支架的制备提供新思路。


关键词: 食管支架,  喷墨打印,  驱动波形,  液滴直径,  GelMA水凝胶 
Fig.1 Structure diagram of piezoelectric inkjet printing platform
Fig.2 Driving waveform and working principle of piezoelectric inkjet head
Fig.3 Grid division of temperature control box simulation model
Fig.4 Temperature variation law of temperature control box and rotating shaft under different temperatures of temperature control cover
Fig.5 Influence of driving waveform voltage amplitude on droplet diameter
Fig.6 Influence of driving waveform slope parameter on droplet diameter
Fig.7 Influence of driving waveform pulse width on droplet diameter
Fig.8 Printing results of drug-carrying layer of esophageal stent
[1]   努日亚·艾尼瓦尔, 古丽巴哈尔·司马义. 食管支架在治疗良性、恶性食管狭窄的研究进展[J]. 世界最新医学信息文摘, 2019, 19(8): 100-101.
AINIWAER N R Y, SIMAYI G L B H E. Research progress of esophageal stent in the treatment of benign and malignant esophageal stenosis[J]. World Latest Medicine Information, 2019, 19(8): 100-101.
[2]   SIERSEMA P D. How to approach a patient with refractory or recurrent benign esophageal stricture[J]. Gastroenterology, 2019, 156(1): 7-10.
[3]   WEN J, LU Z S, YANG Y S, et al. Preventing stricture formation by covered esophageal stent placement after endoscopic submucosal dissection for early esophageal cancer[J]. Digestive Diseases and Sciences, 2014, 59(3): 658-663.
[4]   CHOU I T, YU F J, SHIH H Y, et al. Risk factors of stent migration in esophageal cancer patients who underwent fully-covered self-expanding metal stents for malignant dysphagia or tracheoesophageal fistula[J/OL]. Journal of the Formosan Medical Association, 2024(2024-05-31) [2024-06-20]. .
[5]   WU J Z, ZHOU C, LIU S, et al. TGF-β1 inhibitor P144 protects against benign restenosis after esophageal stenting through TGF-β1/Smads signaling pathway inhibition[J]. Arab Journal of Gastroenterology, 2024, 25(2): 214-222.
[6]   SUN D M, ZHENG Y M, YIN T Y, et al. Coronary drug-eluting stents: from design optimization to newer strategies[J]. Journal of Biomedical Materials Research Part A, 2014, 102(5): 1625-1640.
[7]   JIN Z, WU K Q, HOU J W, et al. A PTX/nitinol stent combination with temperature-responsive phase-change 1-hexadecanol for magnetocaloric drug delivery: magnetocaloric drug release and esophagus tissue penetration[J]. Biomaterials, 2018, 153: 49-58.
[8]   FERREIRA-SILVA J, MEDAS R, GIROTRA M, et al. Futuristic developments and applications in endoluminal stenting[J]. Gastroenterology Research and Practice, 2022, 2022(1): 6774925.
[9]   YUAN T Y, LIU D D, LI Q, et al. 3D printing of melatonin-loaded esophageal stents for treatment of corrosive esophagitis[J]. Applied Materials Today, 2024, 37: 102161.
[10]   LIN M H, FIROOZI N, TSAI C T, et al. 3D-printed flexible polymer stents for potential applications in inoperable esophageal malignancies[J]. Acta Biomaterialia, 2019, 83: 119-129.
[11]   FOULADIAN P, KOHLHAGEN J, ARAFAT M, et al. Three-dimensional printed 5-fluorouracil eluting polyurethane stents for the treatment of oesophageal cancers[J]. Biomaterials Science, 2020, 8(23): 6625-6636.
[12]   LIU H, LEI T, MA C, et al. Optimization of driven waveform of piezoelectric printhead for 3D sand-printing[J]. Additive Manufacturing, 2021, 37: 101627.
[13]   YANG Z J, TIAN H M, WANG C H, et al. Actuation waveform optimization via multi-pulse crosstalk modulation for stable ultra-high frequency piezoelectric drop-on-demand printing[J]. Additive Manufacturing, 2022, 60: 103165.
[14]   ZHANG Y, MA L M, HUANG J, et al. The effect of paclitaxel-eluting covered metal stents versus covered metal stents in a rabbit esophageal squamous carcinoma model[J]. PLoS One, 2017, 12(3): e0173262.
[15]   LIU J Y, WANG Z M, WU K Q, et al. Paclitaxel or 5-fluorouracil/esophageal stent combinations as a novel approach for the treatment of esophageal cancer[J]. Biomaterials, 2015, 53: 592-599.
[16]   KONG B, CHEN Y, LIU R, et al. Fiber reinforced GelMA hydrogel to induce the regeneration of corneal stroma[J]. Nature Communications, 2020, 11: 1435.
[17]   LIU C J, YU Q F, YUAN Z Q, et al. Engineering the viscoelasticity of gelatin methacryloyl (GelMA) hydrogels via small “dynamic bridges” to regulate BMSC behaviors for osteochondral regeneration[J]. Bioactive Materials, 2023, 25: 445-459.
[18]   CHIA H N, WU B M. Recent advances in 3D printing of biomaterials[J]. Journal of Biological Engineering, 2015, 9: 4.
[19]   李润, 梁文峰, 朱慧轩, 等. 高黏度压电式膜片喷头仿真分析与实验研究[J]. 微纳电子技术, 2023, 60(6): 948-956. doi:10.13250/j.cnki.wndz.2023.06.017
LI R, LIANG W F, ZHU H X, et al. Simulation analysis and experimental study of piezoelectric diaphragm nozzle with high viscosity[J]. Micronanoelectronic Technology, 2023, 60(6): 948-956.
doi: 10.13250/j.cnki.wndz.2023.06.017
[20]   ZHU H X, LI R, LI S, et al. Multi-physical field control piezoelectric inkjet bioprinting for 3D tissue-like structure manufacturing[J]. International Journal of Bioprinting, 2024, 10(3): 2120.
[21]   WIJAYANTI W, MUSYAROH, SASONGKO M N, et al. Modelling analysis of pyrolysis process with thermal effects by using COMSOL Multiphysics[J]. Case Studies in Thermal Engineering, 2021, 28: 101625.
[22]   纪闯. 高黏度生物材料的压电式微喷射3D打印关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
JI C. Research on the key technologies of piezoelectric micro jet 3D printing for high viscosity biomaterials[D]. Harbin: Harbin Institute of Technology, 2020.
[1] ZHONG Li-qiang, CHEN Wen-hua, PAN Jun, LI Xiang-sheng, HE Zeng-liang. Failure mode, effect and criticality analysis of the high-speed belt guide digital inkjet printing machine[J]. Chinese Journal of Engineering Design, 2014, 21(5): 412-417.