In order to analyze the root of shearer rocker arm shell failure and ensure the safe and stable operation of shearer, the influencing factors of shearer rocker arm shell deformation were analyzed, and the shell deformation law was studied.Firstly, the mechanical model of the rocker arm shell was constructed, and the load factors affecting the deformation of rocker arm shell were sorted out, including the external forces generated by coal rock on the drum and the internal loads formed by gear transmission system when the shearer was cutting. Secondly, Solidworks software was used to establish the three-dimensional model of the rocker arm, and EDEM-ADAMS software was used to build the elevation working condition model of shearer cutting 4 types of gangue coal rocks, containing aluminous rock, gray rock, limestone and siltstone, to simulate the deformation of the rocker arm shell. Finally, the shell deformation test platform was set up, and the experiment of shearer cutting silt-containing gangue coal was carried out. The simulation results showed that the mean value of drag traction resistance was less than the mean value of cutting resistance, and both were greater than the mean value of lateral force. After the shell was subjected to external loads, its deformation was complex, at the joint of the rocker arm shell and the drum planetary reducer, the deformation was large, and the risk of instability was large. The deformation of rocker arm shell at the position of gear shaft exhibited a nonlinear, approximate normal distribution with multiple peaks. The experimental results showed that the closer to the drum planetary reducer, the greater the deformation, which was highly consistent with the simulation results. The research clearly shows the deformation law of the rocker arm shell under complex loads providing a robust theoretical support for the improved design of the rocker arm shell, and is helpful to optimize the shearer design scheme, reduce the shell failure risk, and effectively improve the reliability and stability of the shearer in actual production.
Received: 18 September 2024
Published: 06 May 2025
Liyong TIAN,Xiaohan YU,Ning YU. Study on deformation law of rocker arm shell of shearer based on EDEM-ADAMS. Chinese Journal of Engineering Design, 2025, 32(2): 220-231.
Fig.4 Schematic of structure of rocker arm transmission system
齿轮
齿数/个
模数/mm
齿宽/mm
Z1
35
4
70
Z2
60
4
70
Z3
63
4
70
Z4
32
5
80
Z5
73
5
80
Z6
33
6
110
Z7
60
6
110
Z8
60
6
110
Z9
69
6
110
Table 1Size parameters of gear of rocker arm transmission system
Fig.5 Model of rocker arm shell
Fig.6 Grid independence verification result of rocker arm shell model
材料
杨氏模量/MPa
密度/(kg/m3)
泊松比
抗压强度/MPa
坚固
系数
煤
2 010
1 280
0.28
12
铝质岩
3 260
2 460
0.24
30
3.5
灰色岩
12 100
2 630
0.23
42
5.1
石灰岩
18 300
2 610
0.21
52
6.8
粉砾岩
21 500
2 600
0.19
64
8.4
Table 2Parameters of gangue coal rock material
材料1
材料2
碰撞系数
静系数
滚动系数
煤
煤
0.10
0.65
0.10
煤
滚筒
0.65
0.85
0.35
煤
铝质岩
0.35
0.55
0.15
煤
灰色岩
0.37
0.55
0.16
煤
石灰岩
0.38
0.55
0.16
煤
粉砾岩
0.40
0.55
0.17
铝质岩
滚筒
0.80
0.45
0.25
灰色岩
滚筒
0.82
0.45
0.14
石灰岩
滚筒
0.84
0.45
0.19
粉砾岩
滚筒
0.85
0.45
0.29
铝质岩
铝质岩
0.41
0.50
0.10
灰色岩
灰色岩
0.43
0.50
0.11
石灰岩
石灰岩
0.43
0.50
0.12
粉砾岩
粉砾岩
0.43
0.50
0.13
Table 3Interaction parameters between materials
颗粒1
颗粒2
法向刚度/(108N/m3)
切向刚度/(108N/m3)
最大法向应力/107Pa
最大切向应力/107Pa
煤
煤
1.216 5
0.973 20
0.831 83
0.235 73
煤
铝质岩
1.551 9
1.241 5
1.700 3
0.750 10
煤
灰色岩
1.9537
1.562 9
1.761 5
0.742 13
煤
石灰岩
2.184 2
1.747 3
1.800 3
0.739 48
煤
粉砾岩
2.301 7
1.841 5
1.854 3
0.738 65
铝质岩
铝质岩
2.142 6
1.714 0
2.637 9
1.3295
灰色岩
灰色岩
7.413 6
5.930 9
2.756 3
1.2793
石灰岩
石灰岩
10.678 0
8.542 5
2.817 9
1.2592
Table 4Bonding parameters between coal rock particles
Fig.7 Topology diagram of constraint relationships of rocker arm transmission system
零件名称
运动副
相连零件
摇臂连接耳
旋转副
大地
各级齿轮
旋转副
齿轮轴
齿轮轴
固定副
摇臂壳体
惰轮
旋转副
惰轮轴
惰轮轴
固定副
摇臂壳体
内齿圈
固定副
摇臂
各级行星轮
转动副
各级内齿圈
各级太阳轮
转动副
各级内齿圈
各级行星轮
转动副
各级行星架
滚筒
转动副
二级行星架
Table 5constraint relationships between components
Fig.8 Simulation process of drum cutting gangue coal rock
Fig.9 Three-way cutting load and torque on drum
Fig.10 Comparison of mean value of three-way cutting load on drum and fluctuation coefficient under different working conditions
Fig.11 Three-dimensional diagram of rocker arm shell deformation
Fig.12 Deformation cloud diagram of rocker arm shell under working condition of aluminum rock gangue with cutting 18.2 s
Fig.13 Rocker arm shell deformation test platform
材料
煤层
夹矸层
水
200
180
水泥
220
195
煤粗骨料
410
煤细骨料
540
粗粉砂岩粒
525
细粉砂岩粒
560
Table 6Mass concentration of each material of simulated gangue coal rock
Fig.14 Schematic of primary positions of rocker arm shell strain sensor
测量项
测点
x方向应变
7、8、9、10、11、18、19、21、22
y方向应变
8、9、10
Table 7Setting of rocker arm shell strain measuring point after optimization
Fig.15 Arrangement of rocker arm shell strain sensor
测点
传感器编码
通道
应变方向
7
1303
10045-1
x
8
1252
10045-2
x
8
1286
10045-3
y
9
1250
10036-1
x
9
1318
10036-2
y
10
1293
10036-4
x
10
1298
10036-3
y
11
1272
10045-4
x
18
1291
10044-1
x
19
1244
10044-4
x
21
1320
10044-2
x
22
1315
10044-3
x
Table 8Data collected by strain sensor
Fig.16 Strain curves of measuring points in x direction
Fig.17 Strain curves of measuring points in y direction
Fig.18 Combined strain curves of measuring point 8, 9, 10
[1]
翟雨生. 采煤机摇臂壳体断裂原因分析及改进措施[J]. 煤矿机械, 2014, 35(10): 192-193. ZHAI Y S. Fracture analysis and improvement measures of ranging shell for shearer[J]. Coal Mine Machinery, 2014, 35(10): 192-193.
[2]
张义民, 黄婧, 朱丽莎, 等. 采煤机摇臂传动系统可靠性稳健优化设计[J]. 煤炭学报, 2015, 40(11): 2540-2545. ZHANG Y M, HUANG J, ZHU L S, et al. Reliability-based robust optimization design of the transmission system of a shearer ranging arm[J]. Journal of China Coal Society, 2015, 40(11): 2540-2545.
[3]
李磊, 王义亮, 杨兆建. 采煤机摇臂壳体瞬态动力学与模态分析[J]. 工矿自动化, 2018, 44(6): 86-89. LI L, WANG Y L, YANG Z J. Transient dynamics and modal analysis of rocker shell of shearer[J]. Industry and Mine Automation, 2018, 44(6): 86-89.
[4]
赵燕辉. 采煤机摇臂壳体动力学分析及可靠性设计[D]. 沈阳: 东北大学, 2019. ZHAO Y H. Dynamic analysis and reliability design of shearer rocker shell[D]. Shenyang: Northeastern University, 2019.
[5]
付晓, 梅志远, 张二, 等. 变曲率旋转壳体承载能力分析与几何构型设计[J]. 华中科技大学学报(自然科学版), 2024, 52(3): 97-104. FU X, MEI Z Y, ZHANG E, et al. Analysis of bearing capacity and geometric configuration design for variable curvature shells[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2024, 52(3): 97-104.
[6]
赵丽娟,杨世杰,张海宁,等. 基于DEM-MFBD双向耦合技术的采煤机摇臂壳体疲劳寿命预测[J]. 煤炭科学技术,2023,51(S2):252-258. ZHAO L J, YANG S J, ZHANG H N, et al. Fatigue life prediction of shearer rocker arm housing based on DEM-MFBD bidirectional coupling technology[J]. Coal Science And Technology, 2023,51(S2):252-258.
[7]
WANG X, BAI Y X, ZOU X F, et al. Research on indirect measurement and estimation method of shearer drum cutting load[J]. Alexandria Engineering Journal, 2023, 65: 939-949.
[8]
杨阳, 马鹏程, 秦大同, 等. 采煤机变速截割传动系统动力学特性分析[J]. 煤炭学报, 2016, 41(S2): 548-555. YANG Y, MA P C, QIN D T, et al. Analysis of dynamic characteristics for longwall shearer cutting transmission system with varying cutting speed[J]. Journal of China Coal Society, 2016, 41(S2): 548-555.
[9]
刘春生. 滚筒式采煤机理论设计基础[M]. 徐州: 中国矿业大学出版社, 2003. LIU C S. Theoretical design basis of drum shearer[M]. China University of Mining and Technology Press, 2003.
[10]
王振乾. 电牵引采煤机机械系统可靠性低的原因及改进措施[J]. 矿山机械, 2015, 43(2): 1-5. WANG Z Q. Causes of low reliability of mechanical system in electric traction shearer and improvement measures[J]. Mining & Processing Equipment, 2015, 43(2): 1-5.
[11]
杨辉. 采煤机截割部行星架疲劳寿命分析及优化的参数化研究[D]. 太原: 太原理工大学, 2022. YANG H. parametric study on fatigue life analysis and optimization of planetary carrier of shearer cutting unit[D]. Taiyuan: Taiyuan University of Technology, 2022.
[12]
田立勇, 毛君, 王启铭. 基于采煤机摇臂惰轮轴受力分析的综合煤岩识别方法[J]. 煤炭学报, 2016, 41(3): 782-787. TIAN L Y, MAO J, WANG Q M. Coal and rock identification method based on the force of idler shaft in shearer’s ranging arm[J]. Journal of China Coal Society, 2016, 41(3): 782-787.
[13]
王雅东. 含夹矸煤岩高效截割滚筒设计研究[D]. 阜新: 辽宁工程技术大学, 2019. WANG Y D. Design and research of high efficiency cutting drum for gangue coal and rock[D]. Fuxin: Liaoning Technical University, 2019.
[14]
陈洋. 采煤机滚筒螺旋叶片磨损问题离散元仿真及装煤性能优化[D]. 阜新: 辽宁工程技术大学, 2020. CHEN Y. Discrete element simulation of spiral blade wearof shearer drum and optimization of coal loading performance[D]. Fuxin: Liaoning Technical University, 2020.
[15]
赵丽娟, 金鑫, 赵宇迪, 等. 含夹矸煤层滚筒磨损特性离散元模拟试验分析[J]. 煤炭学报, 2020, 45(9): 3341-3350. ZHAO L J, JIN X, ZHAO Y D, et al. Discrete element simulation analysis on the wear characteristics of drum in coal seam with gangue[J]. Journal of China Coal Society, 2020, 45(9): 3341-3350.
[16]
朱惠斌, 吴宪, 白丽珍, 等. 基于EDEM-ADAMS仿真的稻茬地双轴破茬免耕装置研制[J]. 农业工程学报, 2022, 38(19): 10-22. ZHU H B, WU X, BAI L Z, et al. Development of the biaxial stubble breaking no-tillage device for rice stubble field based on EDEM-ADAMS simulation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(19): 10-22.
[17]
邹昌华. 模拟煤壁施工技术[J/OL]. 城市建设理论研究(电子版), 2017(31): 156-157. doi:10.1142/9789813220690_0008 ZOU C H. Simulated coal wall construction technology[J/OL]. Theoretical Research in Urban Construction, 2017(31): 156-157.
doi: 10.1142/9789813220690_0008
[18]
张建军, 郑杨, 崔正龙. 煤为骨料的模拟煤壁材料配比及结构研究[J]. 煤炭技术, 2016, 35(1): 288-289. ZHANG J J, ZHENG Y, CUI Z L. Research and design on proportion and structure layer of simulation call wall aggregate with coal[J]. Coal Technology, 2016, 35(1): 288-289.
[19]
吴丹, 吴子燕, 杨海峰, 等. 基于两步有效配置法的传感器优化布置[J]. 西华大学学报(自然科学版), 2008, 27(2): 48-51, 3. WU D, W Z Y, YANG H F, et al. Optimal sensor placement base on effective two-step arrangement approaches[J]. Journal of Xihua University (Natural Science Edition), 2008, 27(2): 48-51, 3.
[20]
谭坤. 膝关节变刚度护具设计及实验研究[D]. 西安: 西安理工大学, 2024. TAN K. Design and experimental study of knee joint variable stiffness protective gear[D]. Xi’an: Xi’an University of Technology, 2024.