Please wait a minute...
Chinese Journal of Engineering Design  2025, Vol. 32 Issue (2): 220-231    DOI: 10.3785/j.issn.1006-754X.2025.04.169
Reliability and Quality Design     
Study on deformation law of rocker arm shell of shearer based on EDEM-ADAMS
Liyong TIAN(),Xiaohan YU(),Ning YU
School of Mechanical Engineering, Liaoning Technical University, Fuxin 123000, China
Download: HTML     PDF(6224KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to analyze the root of shearer rocker arm shell failure and ensure the safe and stable operation of shearer, the influencing factors of shearer rocker arm shell deformation were analyzed, and the shell deformation law was studied.Firstly, the mechanical model of the rocker arm shell was constructed, and the load factors affecting the deformation of rocker arm shell were sorted out, including the external forces generated by coal rock on the drum and the internal loads formed by gear transmission system when the shearer was cutting. Secondly, Solidworks software was used to establish the three-dimensional model of the rocker arm, and EDEM-ADAMS software was used to build the elevation working condition model of shearer cutting 4 types of gangue coal rocks, containing aluminous rock, gray rock, limestone and siltstone, to simulate the deformation of the rocker arm shell. Finally, the shell deformation test platform was set up, and the experiment of shearer cutting silt-containing gangue coal was carried out. The simulation results showed that the mean value of drag traction resistance was less than the mean value of cutting resistance, and both were greater than the mean value of lateral force. After the shell was subjected to external loads, its deformation was complex, at the joint of the rocker arm shell and the drum planetary reducer, the deformation was large, and the risk of instability was large. The deformation of rocker arm shell at the position of gear shaft exhibited a nonlinear, approximate normal distribution with multiple peaks. The experimental results showed that the closer to the drum planetary reducer, the greater the deformation, which was highly consistent with the simulation results. The research clearly shows the deformation law of the rocker arm shell under complex loads providing a robust theoretical support for the improved design of the rocker arm shell, and is helpful to optimize the shearer design scheme, reduce the shell failure risk, and effectively improve the reliability and stability of the shearer in actual production.



Key wordsrocker arm shell      EDEM simulation      cutting load      deformation law      experimental test     
Received: 18 September 2024      Published: 06 May 2025
CLC:  TD 42  
Corresponding Authors: Xiaohan YU     E-mail: qingyalou403@163.com;1060592986@qq.com
Cite this article:

Liyong TIAN,Xiaohan YU,Ning YU. Study on deformation law of rocker arm shell of shearer based on EDEM-ADAMS. Chinese Journal of Engineering Design, 2025, 32(2): 220-231.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2025.04.169     OR     https://www.zjujournals.com/gcsjxb/Y2025/V32/I2/220


基于EDEM-ADAMS的采煤机摇臂壳体变形规律研究

为了剖析采煤机摇臂壳体失效的根源、保障采煤机安全稳定运行,分析了采煤机摇臂壳体变形的影响因素,研究了壳体变形规律。首先,构建了摇臂壳体力学模型,梳理了影响摇臂壳体变形的载荷因素,其中包括采煤机截割时煤岩对滚筒产生的外部作用力及齿轮传动系统所形成的内部载荷;其次,采用Solidworks软件建立了摇臂三维模型,并基于EDEM-ADAMS软件搭建了采煤机截割含铝质岩、灰色岩、石灰岩和粉砾岩等4种夹矸煤岩的仰角工况模型,进行摇臂壳体变形仿真;最后,搭建了壳体变形测试平台,进行了采煤机截割粉砂夹矸煤岩的实验。仿真结果表明:滚筒牵引阻力的均值小于截割阻力均值,且两者均大于侧向受力均值;壳体承受外部载荷后,其变形呈现较复杂的态势,在摇臂壳体与滚筒行星减速器结合部位的变形较大,失稳风险较大;摇臂壳体在齿轮轴位置的变形呈现多波峰、非线性、近似正态分布。实验结果表明,距滚筒行星减速器越近,变形越大,这与仿真结果高度吻合。研究清晰地揭示了摇臂壳体在复杂载荷下的变形规律,为摇臂壳体的改进设计提供了强劲的理论支撑,有助于优化采煤机设计方案,降低壳体失效风险,有效提升采煤机在实际生产作业中的可靠性与稳定性。


关键词: 摇臂壳体,  EDEM仿真,  截割载荷,  变形规律,  实验测试 
Fig.1 Schematic of rocker arm shell force
Fig.2 Schematic of three-way force of drum
Fig.3 Gear force analysis
Fig.4 Schematic of structure of rocker arm transmission system
齿轮齿数/个模数/mm齿宽/mm
Z135470
Z260470
Z363470
Z432580
Z573580
Z6336110
Z7606110
Z8606110
Z9696110
Table 1 Size parameters of gear of rocker arm transmission system
Fig.5 Model of rocker arm shell
Fig.6 Grid independence verification result of rocker arm shell model
材料杨氏模量/MPa密度/(kg/m3)泊松比抗压强度/MPa

坚固

系数

2 0101 2800.2812
铝质岩3 2602 4600.24303.5
灰色岩12 1002 6300.23425.1
石灰岩18 3002 6100.21526.8
粉砾岩21 5002 6000.19648.4
Table 2 Parameters of gangue coal rock material
材料1材料2碰撞系数静系数滚动系数
0.100.650.10
滚筒0.650.850.35
铝质岩0.350.550.15
灰色岩0.370.550.16
石灰岩0.380.550.16
粉砾岩0.400.550.17
铝质岩滚筒0.800.450.25
灰色岩滚筒0.820.450.14
石灰岩滚筒0.840.450.19
粉砾岩滚筒0.850.450.29
铝质岩铝质岩0.410.500.10
灰色岩灰色岩0.430.500.11
石灰岩石灰岩0.430.500.12
粉砾岩粉砾岩0.430.500.13
Table 3 Interaction parameters between materials
颗粒1颗粒2法向刚度/(108N/m3)切向刚度/(108N/m3)最大法向应力/107Pa最大切向应力/107Pa
1.216 50.973 200.831 830.235 73
铝质岩1.551 91.241 51.700 30.750 10
灰色岩1.95371.562 91.761 50.742 13
石灰岩2.184 21.747 31.800 30.739 48
粉砾岩2.301 71.841 51.854 30.738 65
铝质岩铝质岩2.142 61.714 02.637 91.3295
灰色岩灰色岩7.413 65.930 92.756 31.2793
石灰岩石灰岩10.678 08.542 52.817 91.2592
Table 4 Bonding parameters between coal rock particles
Fig.7 Topology diagram of constraint relationships of rocker arm transmission system
零件名称运动副相连零件
摇臂连接耳旋转副大地
各级齿轮旋转副齿轮轴
齿轮轴固定副摇臂壳体
惰轮旋转副惰轮轴
惰轮轴固定副摇臂壳体
内齿圈固定副摇臂
各级行星轮转动副各级内齿圈
各级太阳轮转动副各级内齿圈
各级行星轮转动副各级行星架
滚筒转动副二级行星架
Table 5 constraint relationships between components
Fig.8 Simulation process of drum cutting gangue coal rock
Fig.9 Three-way cutting load and torque on drum
Fig.10 Comparison of mean value of three-way cutting load on drum and fluctuation coefficient under different working conditions
Fig.11 Three-dimensional diagram of rocker arm shell deformation
Fig.12 Deformation cloud diagram of rocker arm shell under working condition of aluminum rock gangue with cutting 18.2 s
Fig.13 Rocker arm shell deformation test platform
材料煤层夹矸层
200180
水泥220195
煤粗骨料410
煤细骨料540
粗粉砂岩粒525
细粉砂岩粒560
Table 6 Mass concentration of each material of simulated gangue coal rock
Fig.14 Schematic of primary positions of rocker arm shell strain sensor
测量项测点
x方向应变7、8、9、10、11、18、19、21、22
y方向应变8、9、10
Table 7 Setting of rocker arm shell strain measuring point after optimization
Fig.15 Arrangement of rocker arm shell strain sensor
测点传感器编码通道应变方向
7130310045-1x
8125210045-2x
8128610045-3y
9125010036-1x
9131810036-2y
10129310036-4x
10129810036-3y
11127210045-4x
18129110044-1x
19124410044-4x
21132010044-2x
22131510044-3x
Table 8 Data collected by strain sensor
Fig.16 Strain curves of measuring points in x direction
Fig.17 Strain curves of measuring points in y direction
Fig.18 Combined strain curves of measuring point 8, 9, 10
[1]   翟雨生. 采煤机摇臂壳体断裂原因分析及改进措施[J]. 煤矿机械, 2014, 35(10): 192-193.
ZHAI Y S. Fracture analysis and improvement measures of ranging shell for shearer[J]. Coal Mine Machinery, 2014, 35(10): 192-193.
[2]   张义民, 黄婧, 朱丽莎, 等. 采煤机摇臂传动系统可靠性稳健优化设计[J]. 煤炭学报, 2015, 40(11): 2540-2545.
ZHANG Y M, HUANG J, ZHU L S, et al. Reliability-based robust optimization design of the transmission system of a shearer ranging arm[J]. Journal of China Coal Society, 2015, 40(11): 2540-2545.
[3]   李磊, 王义亮, 杨兆建. 采煤机摇臂壳体瞬态动力学与模态分析[J]. 工矿自动化, 2018, 44(6): 86-89.
LI L, WANG Y L, YANG Z J. Transient dynamics and modal analysis of rocker shell of shearer[J]. Industry and Mine Automation, 2018, 44(6): 86-89.
[4]   赵燕辉. 采煤机摇臂壳体动力学分析及可靠性设计[D]. 沈阳: 东北大学, 2019.
ZHAO Y H. Dynamic analysis and reliability design of shearer rocker shell[D]. Shenyang: Northeastern University, 2019.
[5]   付晓, 梅志远, 张二, 等. 变曲率旋转壳体承载能力分析与几何构型设计[J]. 华中科技大学学报(自然科学版), 2024, 52(3): 97-104.
FU X, MEI Z Y, ZHANG E, et al. Analysis of bearing capacity and geometric configuration design for variable curvature shells[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2024, 52(3): 97-104.
[6]   赵丽娟,杨世杰,张海宁,等. 基于DEM-MFBD双向耦合技术的采煤机摇臂壳体疲劳寿命预测[J]. 煤炭科学技术,2023,51(S2):252-258.
ZHAO L J, YANG S J, ZHANG H N, et al. Fatigue life prediction of shearer rocker arm housing based on DEM-MFBD bidirectional coupling technology[J]. Coal Science And Technology, 2023,51(S2):252-258.
[7]   WANG X, BAI Y X, ZOU X F, et al. Research on indirect measurement and estimation method of shearer drum cutting load[J]. Alexandria Engineering Journal, 2023, 65: 939-949.
[8]   杨阳, 马鹏程, 秦大同, 等. 采煤机变速截割传动系统动力学特性分析[J]. 煤炭学报, 2016, 41(S2): 548-555.
YANG Y, MA P C, QIN D T, et al. Analysis of dynamic characteristics for longwall shearer cutting transmission system with varying cutting speed[J]. Journal of China Coal Society, 2016, 41(S2): 548-555.
[9]   刘春生. 滚筒式采煤机理论设计基础[M]. 徐州: 中国矿业大学出版社, 2003.
LIU C S. Theoretical design basis of drum shearer[M]. China University of Mining and Technology Press, 2003.
[10]   王振乾. 电牵引采煤机机械系统可靠性低的原因及改进措施[J]. 矿山机械, 2015, 43(2): 1-5.
WANG Z Q. Causes of low reliability of mechanical system in electric traction shearer and improvement measures[J]. Mining & Processing Equipment, 2015, 43(2): 1-5.
[11]   杨辉. 采煤机截割部行星架疲劳寿命分析及优化的参数化研究[D]. 太原: 太原理工大学, 2022.
YANG H. parametric study on fatigue life analysis and optimization of planetary carrier of shearer cutting unit[D]. Taiyuan: Taiyuan University of Technology, 2022.
[12]   田立勇, 毛君, 王启铭. 基于采煤机摇臂惰轮轴受力分析的综合煤岩识别方法[J]. 煤炭学报, 2016, 41(3): 782-787.
TIAN L Y, MAO J, WANG Q M. Coal and rock identification method based on the force of idler shaft in shearer’s ranging arm[J]. Journal of China Coal Society, 2016, 41(3): 782-787.
[13]   王雅东. 含夹矸煤岩高效截割滚筒设计研究[D]. 阜新: 辽宁工程技术大学, 2019.
WANG Y D. Design and research of high efficiency cutting drum for gangue coal and rock[D]. Fuxin: Liaoning Technical University, 2019.
[14]   陈洋. 采煤机滚筒螺旋叶片磨损问题离散元仿真及装煤性能优化[D]. 阜新: 辽宁工程技术大学, 2020.
CHEN Y. Discrete element simulation of spiral blade wearof shearer drum and optimization of coal loading performance[D]. Fuxin: Liaoning Technical University, 2020.
[15]   赵丽娟, 金鑫, 赵宇迪, 等. 含夹矸煤层滚筒磨损特性离散元模拟试验分析[J]. 煤炭学报, 2020, 45(9): 3341-3350.
ZHAO L J, JIN X, ZHAO Y D, et al. Discrete element simulation analysis on the wear characteristics of drum in coal seam with gangue[J]. Journal of China Coal Society, 2020, 45(9): 3341-3350.
[16]   朱惠斌, 吴宪, 白丽珍, 等. 基于EDEM-ADAMS仿真的稻茬地双轴破茬免耕装置研制[J]. 农业工程学报, 2022, 38(19): 10-22.
ZHU H B, WU X, BAI L Z, et al. Development of the biaxial stubble breaking no-tillage device for rice stubble field based on EDEM-ADAMS simulation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(19): 10-22.
[17]   邹昌华. 模拟煤壁施工技术[J/OL]. 城市建设理论研究(电子版), 2017(31): 156-157. doi:10.1142/9789813220690_0008
ZOU C H. Simulated coal wall construction technology[J/OL]. Theoretical Research in Urban Construction, 2017(31): 156-157.
doi: 10.1142/9789813220690_0008
[18]   张建军, 郑杨, 崔正龙. 煤为骨料的模拟煤壁材料配比及结构研究[J]. 煤炭技术, 2016, 35(1): 288-289.
ZHANG J J, ZHENG Y, CUI Z L. Research and design on proportion and structure layer of simulation call wall aggregate with coal[J]. Coal Technology, 2016, 35(1): 288-289.
[19]   吴丹, 吴子燕, 杨海峰, 等. 基于两步有效配置法的传感器优化布置[J]. 西华大学学报(自然科学版), 2008, 27(2): 48-51, 3.
WU D, W Z Y, YANG H F, et al. Optimal sensor placement base on effective two-step arrangement approaches[J]. Journal of Xihua University (Natural Science Edition), 2008, 27(2): 48-51, 3.
[20]   谭坤. 膝关节变刚度护具设计及实验研究[D]. 西安: 西安理工大学, 2024.
TAN K. Design and experimental study of knee joint variable stiffness protective gear[D]. Xi’an: Xi’an University of Technology, 2024.
[1] ZHAO Li-juan,LI Minghao. Analysis of the shearer´s rocker arm shell based on the multi-field coupling[J]. Chinese Journal of Engineering Design, 2014, 21(3): 235-239.