|
|
[1] |
YAO C L, HE G Y, SANG Y C, et al. Tool path regeneration in five-axis flank milling for ruled surface based on error distribution[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2022, 236(13): 1751-1759.
|
|
|
[2] |
庞凯瑞. 非可展直纹面侧铣加工刀路轨迹优化方法研究[D]. 天津: 天津大学, 2018. PANG K R. Research on tool path optimization method of flank milling undevelopable ruled surface[D]. Tianjin: Tianjin University, 2018.
|
|
|
[3] |
MONIES F, REDONNET J M, RUBIO W, et al. Improved positioning of a conical mill for machining ruled surfaces: application to turbine blades[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2000, 214(7): 625-634.
|
|
|
[4] |
张立强, 王克用, 王宇晗. 复杂曲面五轴侧铣加工的运动学优化方法[J]. 中国机械工程, 2011, 22(21): 2588-2593. ZHANG L Q, WANG K Y, WANG Y H. Kinematical optimum method for five-axis flank milling complex surfaces[J]. China Mechanical Engineering, 2011, 22(21): 2588-2593.
|
|
|
[5] |
SENATORE J, LANDON Y, RUBIO W. Analytical estimation of error in flank milling of ruled surfaces[J]. Computer-Aided Design, 2008, 40(5): 595-603.
|
|
|
[6] |
LIU X W. Five-axis NC cylindrical milling of sculptured surfaces[J]. Computer-Aided Design, 1995, 27(12): 887-894.
|
|
|
[7] |
REDONNET J M, RUBIO W, DESSEIN G. Side milling of ruled surfaces: optimum positioning of the milling cutter and calculation of interference[J]. The International Journal of Advanced Manufacturing Technology, 1998, 14(7): 459-465.
|
|
|
[8] |
BEDI S, MANN S, MENZEL C. Flank milling with flat end milling cutters[J]. Computer-Aided Design, 2003, 35(3): 293-300.
|
|
|
[9] |
MENZEL C, BEDI S, MANN S. Triple tangent flank milling of ruled surfaces[J]. Computer-Aided Design, 2004, 36(3): 289-296.
|
|
|
[10] |
GONG H, CAO L X, LIU J. Improved positioning of cylindrical cutter for flank milling ruled surfaces[J]. Computer-Aided Design, 2005, 37(12): 1205-1213.
|
|
|
[11] |
YAN Y C, ZHANG L Q, GAO J W. Tool path planning for flank milling of non-developable ruled surface based on immune particle swarm optimization algorithm[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(4): 1063-1074.
|
|
|
[12] |
SUN S X, YAN S C, JIANG S L, et al. A high-accuracy tool path generation (HATPG) method for 5-axis flank milling of ruled surfaces with a conical cutter based on instantaneous envelope surface modelling[J]. Computer-Aided Design, 2022, 151: 103354.
|
|
|
[13] |
SUN S X, SUN Y W, XU J T. Tool path generation for 5-axis flank milling of ruled surfaces with optimal cutter locations considering multiple geometric constraints[J]. Chinese Journal of Aeronautics, 2023, 36(12): 408-424.
|
|
|
[14] |
PECHARD P Y, TOURNIER C, LARTIGUE C, et al. Geometrical deviations versus smoothness in 5-axis high-speed flank milling[J]. International Journal of Machine Tools and Manufacture, 2009, 49(6): 454-461.
|
|
|
[15] |
GONG H, WANG N. Analytical calculation of the envelope surface for generic milling tools directly from CL-data based on the moving frame method[J]. Computer-Aided Design, 2009, 41(11): 848-855.
|
|
|
[16] |
何改云, 庞凯瑞, 桑一村, 等. 曲面匹配方法在刀具加工轨迹优化中的应用[J]. 工程设计学报, 2019, 26(2): 190-196. HE G Y, PANG K R, SANG Y C, et al. Application of surface matching method in tool path optimization[J]. Chinese Journal of Engineering Design, 2019, 26(2): 190-196.
|
|
|
[17] |
陈力智, 周立峰, 王东, 等. 基于三点偏置刀位偏差补偿的五轴侧铣加工路径优化方法[J]. 制造技术与机床, 2023(3): 18-23. CHEN L Z, ZHOU L F, WANG D, et al. Tool path optimization method for 5-axis flank milling based on deviation compensation of three-point offset cutter locations[J]. Manufacturing Technology & Machine Tool, 2023(3): 18-23.
|
|
|
[18] |
CHU C H, CHEN H Y, CHANG C H. Continuity-preserving tool path generation for minimizing machining errors in five-axis CNC flank milling of ruled surfaces[J]. Journal of Manufacturing Systems, 2020, 55: 171-178.
|
|
|
[19] |
邹启晓, 董雷, 曹利新. 非可展直纹面侧铣加工的最小二乘刀位规划方法[J]. 计算机集成制造系统, 2016, 22(3): 748-753. ZOU Q X, DONG L, CAO L X. Least square positioning method of flank milling for non-developable ruled surface[J]. Computer Integrated Manufacturing Systems, 2016, 22(3): 748-753.
|
|
|
[20] |
WU P H, LI Y W, CHU C H. Optimized tool path generation based on dynamic programming for five-axis flank milling of rule surface[J]. International Journal of Machine Tools and Manufacture, 2008, 48(11): 1224-1233.
|
|
|
[21] |
PIEGL L A, TILLER W. The NURBS book[M]. 2nd ed. Berlin: Springer, 1997.
|
|
|
[22] |
刘鹏程, 张连东, 宋雪萍. 基于测地线的移动机器人轨迹规划方法[J]. 机床与液压, 2022, 50(23): 1-5. LIU P C, ZHANG L D, SONG X P. Method for trajectory planning of mobile robot based on geodesics[J]. Machine Tool & Hydraulics, 2022, 50(23): 1-5.
|
|
|
[23] |
ZHANG P, SUN R L, HUANG T. A geometric method for computation of geodesic on parametric surfaces[J]. Computer Aided Geometric Design, 2015, 38: 24-37.
|
|
|
[24] |
赵恒, 万能, 张森堂, 等. 最小非线性插补误差约束的多轴侧铣刀轴矢量优化[J]. 机床与液压, 2022, 50(8): 81-88. ZHAO H, WAN N, ZHANG S T, et al. Cutter orientation optimization under the minimum non-linear interpolation error in multi-axis flank milling[J]. Machine Tool & Hydraulics, 2022, 50(8): 81-88.
|
|
|
[25] |
JUNG Y H, LEE D W, KIM J S, et al. NC post-processor for 5-axis milling machine of table-rotating/tilting type[J]. Journal of Materials Processing Technology, 2002, 130-131: 641-646.
|
|
|