Mechanical parts and equipment design |
|
|
|
|
Design and research of built-in wireless strain acquisition card for tracked traveling structure |
Guozhu YIN1( ),Hong ZHANG1( ),Yang SONG2,Jingyu WANG1,Jiaqi SONG1 |
1.School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China 2.Taiyuan Research Institute Company Limited, China Coal Technology and Engineering Group, Taiyuan 030006, China |
|
|
Abstract Aiming at the problem that it is difficult to obtain the track load of coal mine tracked tunneling robots during driving, a set of four-channel wireless strain acquisition card suitable for collecting dynamic characteristics of tracked traveling structure was designed based on the strain effect of resistive strain gauges and the measurement circuit. Firstly, the circuit and working principle of the strain acquisition card were analyzed. Then, two pairs of strain gauges were symmetrically arranged on the test template, and the strain data collected by DH5902N rugged data acquisition and analysis system was used as the standard to calibrate the sensitivity of four channels in the strain acquisition card through the combination of simulation and test. Finally, the strain acquisition card was integrated and packaged in the tracked traveling structure, and the temperature variation rule of the strain acquisition card under continuous operation in the package environment was discussed. The results showed that the designed strain acquisition card could collect the strain signal of four channels at the same time. Its maximum sampling frequency was 1 000 Hz, transmitting power was 4.5 dBm, and strain acquisition error was less than 5×10-6. The temperature of the strain acquisition card was stable at 34.58 ℃ after 34.7 h continuous operation in the package environment, which could realize the multi-degree-of-freedom strain signal detection for the tracked traveling structure. The research results provide technical support for real-time acquisition of the dynamic load of tracked traveling structures and the reliability analysis and fault prediction of tunneling robots.
|
Received: 20 April 2023
Published: 27 June 2024
|
|
Corresponding Authors:
Hong ZHANG
E-mail: 19581596040@163.com;hexie007@163.com
|
履带行驶结构的内置式无线应变采集卡设计研究
针对煤矿履带掘进机器人在行驶过程中难以获取履带载荷的问题,基于电阻应变片的应变效应和测量电路,设计了一套适用于采集履带行驶结构动态特性的四通道无线应变采集卡。首先,分析了应变采集卡的电路和工作原理。然后,将2对应变片对称布置在试样板中,以DH5902N坚固型数据采集分析系统所采集的应变数据作为标准,通过仿真与试验相结合的方法对应变采集卡4个通道的灵敏度分别进行了标定。最后,将应变采集卡集成封装后内置于履带行驶结构中,并探讨了应变采集卡在封装环境下连续工作时的温度变化规律。结果表明,所设计的应变采集卡可同时采集4个通道的应变信号,其最高采样频率为1 000 Hz,发射功率为4.5 dBm,应变采集误差不超过5×10-6。该应变采集卡在封装环境下连续工作34.7 h后的温度稳定在34.58 ℃左右,可实现履带行驶结构的多自由度应变信号检测。研究结果为履带行驶结构动态载荷的实时采集以及掘进机器人的可靠性分析和故障预测提供了技术支撑。
关键词:
履带行驶结构,
应变采集卡,
标定,
封装
|
|
[1] |
GAGG C R, LEWIS P R. In-service fatigue failure of engineered products and structures: case study review[J]. Engineering Failure Analysis, 2009, 16(6): 1775-1793.
|
|
|
[2] |
涂乃云.履带板断裂分析[J].科技创新导报,2013(21):225. doi:10.3969/j.issn.1674-098X.2013.21.160 TU N Y. Fracture analysis of track shoes[J]. Science and Technology Innovation Herald, 2013(21): 225.
doi: 10.3969/j.issn.1674-098X.2013.21.160
|
|
|
[3] |
白茹,裴东兴,谢锐.嵌入式履带车辆主动轮应力测试系统的研究[J].电子器件,2016,39(3):746-749. doi:10.3969/j.issn.1005-9490.2016.03.048 BAI R, PEI D X, XIE R. Researching on the embedded stress test system of vehicle driving wheel[J]. Chinese Journal of Electron Devices, 2016, 39(3): 746-749.
doi: 10.3969/j.issn.1005-9490.2016.03.048
|
|
|
[4] |
孙晓策,杨桂玲,王超,等.在爬越台阶工况下履带车辆车体的应力应变分析[J].车辆与动力技术,2016(3):33-36. SUN X C, YANG G L, WANG C, et al. Stress and deformation analysis of tracked vehicle body under the working conditions of climbing step[J]. Vehicle & Power Technology, 2016(3): 33-36.
|
|
|
[5] |
吴铁军.基于4G-DTU的多通道无线数据采集器设计[J].仪器仪表用户,2023,30(1):31-35. doi:10.3969/j.issn.1671-1041.2023.01.008 WU T J. Design of multi-channel wireless data collector based on 4G-DTU[J]. Instrumentation, 2023, 30(1): 31-35.
doi: 10.3969/j.issn.1671-1041.2023.01.008
|
|
|
[6] |
郭宏,胡孔耀,闫献国,等.振动自感知刀具磨损无线监测[J].西安交通大学学报,2022,56(11):1-10. doi:10.7652/xjtuxb202211001 GUO H, HU K Y, YAN X G, et al. Wireless monitoring of wear of the vibration self-sensing tool[J]. Journal of Xi'an Jiaotong University, 2022, 56(11): 1-10.
doi: 10.7652/xjtuxb202211001
|
|
|
[7] |
HUANG Q, TANG B, DENG L. Development of high synchronous acquisition accuracy wireless sensor network for machine vibration monitoring[J]. Measurement, 2015, 66: 35-44.
|
|
|
[8] |
ZHONG L, ZHANG S, ZHANG Y, et al. Joint acquisition time design and sensor association for wireless sensor networks in microgrids[J]. Energies, 2021, 14(22): 7756.
|
|
|
[9] |
胡挺,王文瑞,尹曰雷,等.高温应变片参数标定系统的设计与实验研究[J].传感技术学报,2015,28(9):1341-1346. doi:10.3969/j.issn.1004-1699.2015.09.013 HU T, WANG W R, YIN Y L, et al. Design and experiment research of high temperature strain calibration system[J]. Chinese Journal of Sensors and Actuators, 2015, 28(9): 1341-1346.
doi: 10.3969/j.issn.1004-1699.2015.09.013
|
|
|
[10] |
TAN R, CHEN C, ZHENG Y, et al. High-precision calibration method for fiber Bragg grating strain sensing based on an optical lever[J]. Optical Fiber Technology, 2021, 61: 102392.
|
|
|
[11] |
THOMAS M, JONAS H, SENF B, et al. Calibration of piezoresistive shape-memory alloy strain sensors[J]. Journal of Intelligent Material Systems and Structures, 2022, 33(11): 1465-1472.
|
|
|
[12] |
吴忠锴,马铁华,梁志剑.基于LabVIEW的力学应变采集软件设计[J].电子测试,2012(12):56-60. doi:10.3969/j.issn.1000-8519.2012.12.013 WU Z K, MA T H, LIANG Z J. Software design of mechanical strain acquisition based on LabVIEW[J]. Electronic Test, 2012(12): 56-60.
doi: 10.3969/j.issn.1000-8519.2012.12.013
|
|
|
[13] |
王世阳,毕祥军,王平.基于LabVIEW多通道应变采集系统设计[J].国外电子测量技术,2017,36(8):83-87. doi:10.3969/j.issn.1002-8978.2017.08.019 WANG S Y, BI X J, WANG P. Multi-channel strain acquisition system based on LabVIEW[J]. Foreign Electronic Measurement Technology, 2017, 36(8): 83-87.
doi: 10.3969/j.issn.1002-8978.2017.08.019
|
|
|
[14] |
李巧真,李刚,韩钦泽.电阻应变片的实验与应用[J].实验室研究与探索,2011,30(4):134-137. doi:10.3969/j.issn.1006-7167.2011.04.040 LI Q Z, LI G, HAN Q Z. Experiment and application of resistance strain gauge[J]. Research and Exploration in Laboratory, 2011, 30(4): 134-137.
doi: 10.3969/j.issn.1006-7167.2011.04.040
|
|
|
[15] |
胡向东,李锐,程安宁,等.传感器与检测技术[M].北京:机械工业出版社,2013:35-38. doi:10.59238/j.pt.2013.06.001 HU X D, LI R, CHENG A N, et al. Sensor and detecting technology[M]. Beijing: China Machine Press, 2013: 35-38.
doi: 10.59238/j.pt.2013.06.001
|
|
|
[16] |
韩涛,聂小华,段世慧.结构强度试验应变测量误差来源分析[J].工程与试验,2020,60(1):33-34. doi:10.3969/j.issn.1674-3407.2020.01.013 HAN T, NIE X H, DUAN S H. Analysis on the error source of strain measurement in structural strength test[J]. Engineering & Testing, 2020, 60(1): 33-34.
doi: 10.3969/j.issn.1674-3407.2020.01.013
|
|
|
[17] |
李会旗.复杂地质条件下煤矿巷道安全掘进技术[J].能源与节能,2022(11):119-121. doi:10.3969/j.issn.2095-0802.2022.11.033 LI H Q. Safety excavation technology of coal mine roadway under complex geological conditions[J]. Energy and Energy Conservation, 2022(11): 119-121.
doi: 10.3969/j.issn.2095-0802.2022.11.033
|
|
|
[18] |
FRUEHAUF P, MUNDING A, PRESSEL K, et al. Chip-package-board reliability of system-in-package using laminate chip embedding technology based on Cu lead frame[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 10(1): 44-56.
|
|
|
[19] |
杨帆.二代芯片散热模组热设计的研究[J].科学技术创新,2021(9):59-60. doi:10.3969/j.issn.1673-1328.2021.09.025 YANG F. Research on thermal design of second generation chip heat dissipation module[J]. Science and Technology Innovation, 2021(9): 59-60.
doi: 10.3969/j.issn.1673-1328.2021.09.025
|
|
|
[20] |
SWAN I R, BRYANT A T, MAWBY P A. Fast 3D thermal simulation of power module packaging[J]. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2012, 25(4): 378-399.
|
|
|
[21] |
莫婷,陈建,郑延莉,等.电动微耕机锂电池组风冷散热仿真分析[J].农机化研究,2021,43(12):247-253. doi:10.3969/j.issn.1003-188X.2021.12.045 MO T, CHEN J, ZHENG Y L, et al. Simulation of air-cooled heat dissipation of lithium battery pack for electric micro-tiller[J]. Journal of Agricultural Mechaniza
doi: 10.3969/j.issn.1003-188X.2021.12.045
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|