Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (3): 393-401    DOI: 10.3785/j.issn.1006-754X.2024.03.151
Mechanical parts and equipment design     
Design and research of built-in wireless strain acquisition card for tracked traveling structure
Guozhu YIN1(),Hong ZHANG1(),Yang SONG2,Jingyu WANG1,Jiaqi SONG1
1.School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
2.Taiyuan Research Institute Company Limited, China Coal Technology and Engineering Group, Taiyuan 030006, China
Download: HTML     PDF(4163KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the problem that it is difficult to obtain the track load of coal mine tracked tunneling robots during driving, a set of four-channel wireless strain acquisition card suitable for collecting dynamic characteristics of tracked traveling structure was designed based on the strain effect of resistive strain gauges and the measurement circuit. Firstly, the circuit and working principle of the strain acquisition card were analyzed. Then, two pairs of strain gauges were symmetrically arranged on the test template, and the strain data collected by DH5902N rugged data acquisition and analysis system was used as the standard to calibrate the sensitivity of four channels in the strain acquisition card through the combination of simulation and test. Finally, the strain acquisition card was integrated and packaged in the tracked traveling structure, and the temperature variation rule of the strain acquisition card under continuous operation in the package environment was discussed. The results showed that the designed strain acquisition card could collect the strain signal of four channels at the same time. Its maximum sampling frequency was 1 000 Hz, transmitting power was 4.5 dBm, and strain acquisition error was less than 5×10-6. The temperature of the strain acquisition card was stable at 34.58 ℃ after 34.7 h continuous operation in the package environment, which could realize the multi-degree-of-freedom strain signal detection for the tracked traveling structure. The research results provide technical support for real-time acquisition of the dynamic load of tracked traveling structures and the reliability analysis and fault prediction of tunneling robots.



Key wordstracked traveling structure      strain acquisition card      calibration      package     
Received: 20 April 2023      Published: 27 June 2024
CLC:  TH 113  
Corresponding Authors: Hong ZHANG     E-mail: 19581596040@163.com;hexie007@163.com
Cite this article:

Guozhu YIN,Hong ZHANG,Yang SONG,Jingyu WANG,Jiaqi SONG. Design and research of built-in wireless strain acquisition card for tracked traveling structure. Chinese Journal of Engineering Design, 2024, 31(3): 393-401.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.03.151     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I3/393


履带行驶结构的内置式无线应变采集卡设计研究

针对煤矿履带掘进机器人在行驶过程中难以获取履带载荷的问题,基于电阻应变片的应变效应和测量电路,设计了一套适用于采集履带行驶结构动态特性的四通道无线应变采集卡。首先,分析了应变采集卡的电路和工作原理。然后,将2对应变片对称布置在试样板中,以DH5902N坚固型数据采集分析系统所采集的应变数据作为标准,通过仿真与试验相结合的方法对应变采集卡4个通道的灵敏度分别进行了标定。最后,将应变采集卡集成封装后内置于履带行驶结构中,并探讨了应变采集卡在封装环境下连续工作时的温度变化规律。结果表明,所设计的应变采集卡可同时采集4个通道的应变信号,其最高采样频率为1 000 Hz,发射功率为4.5 dBm,应变采集误差不超过5×10-6。该应变采集卡在封装环境下连续工作34.7 h后的温度稳定在34.58 ℃左右,可实现履带行驶结构的多自由度应变信号检测。研究结果为履带行驶结构动态载荷的实时采集以及掘进机器人的可靠性分析和故障预测提供了技术支撑。


关键词: 履带行驶结构,  应变采集卡,  标定,  封装 
Fig.1 Basic structure of direct current bridge
Fig.2 Working principle of strain acquisition card
Fig.3 Circuit diagram of strain acquisition card
Fig.4 Strain acquisition card calibration device
Fig.5 Paste position of strain gauge on test template
应变片位置坐标/mm
XY
114729
1′14718
218729
2′18718
Table 1 Coordinate of paste position of strain gauge
Fig.6 Strain simulation result of test template (circular hole 1 fixed and applied with external force of 41.16 N)

固定

位置

施加外力/N微应变
应变片1应变片1′应变片2应变片2′
圆孔141.16-16.67-16.67-25.30-25.27
80.90-19.27-19.30-49.77-49.70
圆孔341.16-14.24-14.24-25.52-25.54
80.90-27.76-27.76-49.54-49.59
圆孔441.16-14.56-14.56-22.78-22.76
80.90-27.95-27.96-44.00-44.03
圆孔541.16-12.52-12.52-16.83-16.85
80.90-23.46-23.46-32.21-32.25
Table 2 Strain simulation results of test template under different fixed positions and applied external force
固定位置悬挂质量/kg微应变
应变采集卡的CH1DH5902N的CH1应变采集卡的CH2DH5902N的CH2
圆孔14.200/-13.02-6.79-28.13
8.255-5.20-25.88-14.10-56.74
圆孔34.200-3.47-16.50-6.39-27.44
8.255-8.30-32.39-13.89-54.72
圆孔44.200-3.83-17.09-6.85-26.12
8.255-7.26-32.56-12.67-50.36
圆孔54.200-3.10-15.36/-21.44
8.255/-26.04-9.51-37.40
Table 3 Calibration test measurement data for CH1 and CH2 channels of strain acquisition card
固定位置悬挂质量/kg微应变
应变采集卡的CH3DH5902N的CH3应变采集卡的CH4DH5902N的CH4
圆孔14.200-3.77-13.71-6.51-28.10
8.255-6.46-26.30-13.47-54.76
圆孔34.200-4.80-18.48-7.31-27.28
8.255-8.05-35.32-13.51-53.84
圆孔44.200/-18.64/-25.77
8.255-8.06-34.68-12.18-50.15
圆孔54.200/-17.06-5.39-21.11
8.255-7.37-33.73-8.33-37.84
Table 4 Calibration test measurement data for CH3 and CH4 channels of strain acquisition card
Fig.7 Comparison of acquired strain by DH5902N and simulated strain
通道拟合函数决定系数R2
CH1y1=3.640?x1-4.3940.949
CH2y2=3.886?x2-1.1610.994
CH3y3=5.129?x3+5.8850.998
CH4y4=4.015?x4-0.7580.978
Table 5 Fitting function of acquired data of strain acquisition card and DH5902N
Fig.8 Fitting results of acquired data of strain acquisition card and DH5902N
Fig.9 Comparison of acquired data by calibrated strain acquisition card and DH5902N
Fig.10 Strain acquisition card package structure
Fig.11 Package position of strain acquisition card in tracked traveling structure
组件数量/个使用温度范围/℃功耗/W发热量/(W/m3)
LTC6652芯片1-40~1250.016 21.20×106
CC2530芯片1-40~850.097 22.70×106
电阻12-55~1550.021 91.92×107
等效电容4-55~1550.069 16.07×107
Table 6 Power consumption and heat generation of each component of strain acquisition card
Fig.12 Temperature variation rule of strain acquisition card
Fig.13 Temperature cloud map of strain acquisition card at t=34.7 h
[1]   GAGG C R, LEWIS P R. In-service fatigue failure of engineered products and structures: case study review[J]. Engineering Failure Analysis, 2009, 16(6): 1775-1793.
[2]   涂乃云.履带板断裂分析[J].科技创新导报,2013(21):225. doi:10.3969/j.issn.1674-098X.2013.21.160
TU N Y. Fracture analysis of track shoes[J]. Science and Technology Innovation Herald, 2013(21): 225.
doi: 10.3969/j.issn.1674-098X.2013.21.160
[3]   白茹,裴东兴,谢锐.嵌入式履带车辆主动轮应力测试系统的研究[J].电子器件,2016,39(3):746-749. doi:10.3969/j.issn.1005-9490.2016.03.048
BAI R, PEI D X, XIE R. Researching on the embedded stress test system of vehicle driving wheel[J]. Chinese Journal of Electron Devices, 2016, 39(3): 746-749.
doi: 10.3969/j.issn.1005-9490.2016.03.048
[4]   孙晓策,杨桂玲,王超,等.在爬越台阶工况下履带车辆车体的应力应变分析[J].车辆与动力技术,2016(3):33-36.
SUN X C, YANG G L, WANG C, et al. Stress and deformation analysis of tracked vehicle body under the working conditions of climbing step[J]. Vehicle & Power Technology, 2016(3): 33-36.
[5]   吴铁军.基于4G-DTU的多通道无线数据采集器设计[J].仪器仪表用户,2023,30(1):31-35. doi:10.3969/j.issn.1671-1041.2023.01.008
WU T J. Design of multi-channel wireless data collector based on 4G-DTU[J]. Instrumentation, 2023, 30(1): 31-35.
doi: 10.3969/j.issn.1671-1041.2023.01.008
[6]   郭宏,胡孔耀,闫献国,等.振动自感知刀具磨损无线监测[J].西安交通大学学报,2022,56(11):1-10. doi:10.7652/xjtuxb202211001
GUO H, HU K Y, YAN X G, et al. Wireless monitoring of wear of the vibration self-sensing tool[J]. Journal of Xi'an Jiaotong University, 2022, 56(11): 1-10.
doi: 10.7652/xjtuxb202211001
[7]   HUANG Q, TANG B, DENG L. Development of high synchronous acquisition accuracy wireless sensor network for machine vibration monitoring[J]. Measurement, 2015, 66: 35-44.
[8]   ZHONG L, ZHANG S, ZHANG Y, et al. Joint acquisition time design and sensor association for wireless sensor networks in microgrids[J]. Energies, 2021, 14(22): 7756.
[9]   胡挺,王文瑞,尹曰雷,等.高温应变片参数标定系统的设计与实验研究[J].传感技术学报,2015,28(9):1341-1346. doi:10.3969/j.issn.1004-1699.2015.09.013
HU T, WANG W R, YIN Y L, et al. Design and experiment research of high temperature strain calibration system[J]. Chinese Journal of Sensors and Actuators, 2015, 28(9): 1341-1346.
doi: 10.3969/j.issn.1004-1699.2015.09.013
[10]   TAN R, CHEN C, ZHENG Y, et al. High-precision calibration method for fiber Bragg grating strain sensing based on an optical lever[J]. Optical Fiber Technology, 2021, 61: 102392.
[11]   THOMAS M, JONAS H, SENF B, et al. Calibration of piezoresistive shape-memory alloy strain sensors[J]. Journal of Intelligent Material Systems and Structures, 2022, 33(11): 1465-1472.
[12]   吴忠锴,马铁华,梁志剑.基于LabVIEW的力学应变采集软件设计[J].电子测试,2012(12):56-60. doi:10.3969/j.issn.1000-8519.2012.12.013
WU Z K, MA T H, LIANG Z J. Software design of mechanical strain acquisition based on LabVIEW[J]. Electronic Test, 2012(12): 56-60.
doi: 10.3969/j.issn.1000-8519.2012.12.013
[13]   王世阳,毕祥军,王平.基于LabVIEW多通道应变采集系统设计[J].国外电子测量技术,2017,36(8):83-87. doi:10.3969/j.issn.1002-8978.2017.08.019
WANG S Y, BI X J, WANG P. Multi-channel strain acquisition system based on LabVIEW[J]. Foreign Electronic Measurement Technology, 2017, 36(8): 83-87.
doi: 10.3969/j.issn.1002-8978.2017.08.019
[14]   李巧真,李刚,韩钦泽.电阻应变片的实验与应用[J].实验室研究与探索,2011,30(4):134-137. doi:10.3969/j.issn.1006-7167.2011.04.040
LI Q Z, LI G, HAN Q Z. Experiment and application of resistance strain gauge[J]. Research and Exploration in Laboratory, 2011, 30(4): 134-137.
doi: 10.3969/j.issn.1006-7167.2011.04.040
[15]   胡向东,李锐,程安宁,等.传感器与检测技术[M].北京:机械工业出版社,2013:35-38. doi:10.59238/j.pt.2013.06.001
HU X D, LI R, CHENG A N, et al. Sensor and detecting technology[M]. Beijing: China Machine Press, 2013: 35-38.
doi: 10.59238/j.pt.2013.06.001
[16]   韩涛,聂小华,段世慧.结构强度试验应变测量误差来源分析[J].工程与试验,2020,60(1):33-34. doi:10.3969/j.issn.1674-3407.2020.01.013
HAN T, NIE X H, DUAN S H. Analysis on the error source of strain measurement in structural strength test[J]. Engineering & Testing, 2020, 60(1): 33-34.
doi: 10.3969/j.issn.1674-3407.2020.01.013
[17]   李会旗.复杂地质条件下煤矿巷道安全掘进技术[J].能源与节能,2022(11):119-121. doi:10.3969/j.issn.2095-0802.2022.11.033
LI H Q. Safety excavation technology of coal mine roadway under complex geological conditions[J]. Energy and Energy Conservation, 2022(11): 119-121.
doi: 10.3969/j.issn.2095-0802.2022.11.033
[18]   FRUEHAUF P, MUNDING A, PRESSEL K, et al. Chip-package-board reliability of system-in-package using laminate chip embedding technology based on Cu lead frame[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 10(1): 44-56.
[19]   杨帆.二代芯片散热模组热设计的研究[J].科学技术创新,2021(9):59-60. doi:10.3969/j.issn.1673-1328.2021.09.025
YANG F. Research on thermal design of second generation chip heat dissipation module[J]. Science and Technology Innovation, 2021(9): 59-60.
doi: 10.3969/j.issn.1673-1328.2021.09.025
[20]   SWAN I R, BRYANT A T, MAWBY P A. Fast 3D thermal simulation of power module packaging[J]. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2012, 25(4): 378-399.
[21]   莫婷,陈建,郑延莉,等.电动微耕机锂电池组风冷散热仿真分析[J].农机化研究,2021,43(12):247-253. doi:10.3969/j.issn.1003-188X.2021.12.045
MO T, CHEN J, ZHENG Y L, et al. Simulation of air-cooled heat dissipation of lithium battery pack for electric micro-tiller[J]. Journal of Agricultural Mechaniza
doi: 10.3969/j.issn.1003-188X.2021.12.045
[1] Yu TANG,Liang TAO,Yi XU,Heng WANG,Bin CHEN,Xiaolong ZHANG. Development and test of vehicle drive shaft torque test system[J]. Chinese Journal of Engineering Design, 2023, 30(6): 789-796.
[2] Zhijun WANG,Xiaotao ZHANG,Mengxiang LI. Research on decoupling algorithm of six-dimensional force sensor based on polynomial fitting[J]. Chinese Journal of Engineering Design, 2023, 30(5): 571-578.
[3] WANG Chen-xue, PING Xue-liang, XU Chao. Research on the kinematic parameter identification of robot arm based on the assistant location by stereo vision[J]. Chinese Journal of Engineering Design, 2018, 25(1): 27-34.
[4] YU Ben-Guo, WANG Jian-Zhong. Static spectrum analysis detection and its software implementation[J]. Chinese Journal of Engineering Design, 2009, 16(6): 469-472.
[5] XING Zhi-Wei, SUN Jian-Guang, WANG Li-Wen. Research on calibration device of testing vehicle for friction coefficient of runway[J]. Chinese Journal of Engineering Design, 2009, 16(3): 223-226.
[6] FENG Hao, HUA Liang, ZHANG Jian-Sheng, WANG Wan-Liang. Auto-detecting device of dial gauge based on ultrasonic motor[J]. Chinese Journal of Engineering Design, 2006, 13(3): 154-161.
[7] CONG Da-Cheng, YU Da-Yong, HAN Jun-Wei. Kinematics accuracy analysis and error compensation of Stewart platform[J]. Chinese Journal of Engineering Design, 2006, 13(3): 162-165.
[8] HU Ji-Shi, YANG Yi. Construction of packaged air conditioner for cleaning operating room[J]. Chinese Journal of Engineering Design, 2003, 10(4): 238-241.