Please wait a minute...
Chinese Journal of Engineering Design  2023, Vol. 30 Issue (6): 789-796    DOI: 10.3785/j.issn.1006-754X.2023.03.152
Whole Machine and System Design     
Development and test of vehicle drive shaft torque test system
Yu TANG1(),Liang TAO1,Yi XU1,Heng WANG1,Bin CHEN2,Xiaolong ZHANG1()
1.School of Engineering, Anhui Agricultural University, Hefei 230036, China
2.Technology Center of Anhui Jianghuai Automobile, Hefei 230022, China
Download: HTML     PDF(4557KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Torque test of the drive shaft is the main means to disassemble the resistance of the vehicle chassis (including tires) and analyze the energy flow. Aiming at the demand of quick test of vehicle drive shaft torque, a test system which could be applied to different vehicle types was developed. Firstly, the overall architecture of the drive shaft torque test system was designed, which included sensing assembly, wireless acquisition assembly and calibration bench, and key hardware was selected; secondly, a sensing component that could achieve wide temperature compensation and axial moment decoupling was designed using biaxial patch bridge technology, and a rechargeable shaft sleeve that could adapt to narrow spaces was developed, which was made by 3D printing technology, and could support testing endurance requirements of over 20 hours and meet the layout, power supply, and thermal radiation resistance requirements of sensing components; then, a fast calibration test bench suitable for large axial angle deformation of the driving shaft after loading was designed; finally, the developed torque test system was calibrated, and road test and drum test were conducted. The results showed that the linearity of the drive shaft torque calibration reached 99.811%, and the test system had good performance and high test accuracy. The designed vehicle drive shaft torque test system has the advantages of fast calibration and test, portability and reusability of key sensing modules, and has high practical application value.



Key wordsautomotive drive shaft      torque test      system development      calibration      drum test     
Received: 20 April 2023      Published: 02 January 2024
CLC:  U 467.1  
Corresponding Authors: Xiaolong ZHANG     E-mail: 21721266@stu.ahau.edu.cn;xlzhang@ahau.edu.cn
Cite this article:

Yu TANG,Liang TAO,Yi XU,Heng WANG,Bin CHEN,Xiaolong ZHANG. Development and test of vehicle drive shaft torque test system. Chinese Journal of Engineering Design, 2023, 30(6): 789-796.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2023.03.152     OR     https://www.zjujournals.com/gcsjxb/Y2023/V30/I6/789


整车驱动轴扭矩测试系统的开发与测试

驱动轴扭矩测试是汽车底盘(含轮胎)阻力拆解与能量流分析的主要手段。针对整车驱动轴扭矩快速测试的需求,开发了能应用于不同车型的测试系统。首先,设计了驱动轴扭矩测试系统的整体架构,其包括传感总成、无线采集总成和标定台架等,并对关键硬件进行选型;其次,采用双轴布片组桥技术设计了可实现宽温域温度补偿和轴向弯矩解耦的传感部件,并开发了可适应狭小空间的可充电轴套,轴套整体采用3D打印技术制作,能够支持20 h以上的测试续航要求,满足了传感部件的布置、供电和抗热辐射要求;然后,设计了适用于加载后驱动轴大轴向角变形工况的快速标定试验台;最后,对所开发的扭矩测试系统进行标定,并进行了道路试验和转鼓试验。研究结果表明,驱动轴扭矩标定的线性度达到99.811 %,测试系统性能良好,测试精度较高。所设计的整车驱动轴扭矩测试系统具有标定及测试快速,关键传感模块可移植、可重复使用等优势,具有较高的应用价值。


关键词: 汽车驱动轴,  扭矩测试,  系统开发,  标定,  转鼓试验 
Fig.1 Structural block diagram of drive shaft torque test system
元件厂地/型号性能参数供电形式
传感模块德国/ datatel dt 1001T-ST

输出:±2 V,输入:±50 mV,阻值≥350 Ω

工作温度:-40~125 ℃

DC 5.1~9 V
RF无线接收器德国/ datatel dt 1001R2-S模拟输出:±10 V,工作温度:0~40 ℃DC 10~32 V
模数采集模块英国/ Influx

8路差分16位模数通道,精度:±0.001 5%

采样率:1 kHz

DC 4~36 V
应变片日本/ KFGS-2-120-D31-11

硬化后工作温度:-196~120 ℃

自动补偿温度:10~100 ℃,电阻:350 Ω

线性膨胀系数:11×10-6/℃

Table 1 Performance parameters of each component of drive shaft torque test system
Fig.2 Full bridge connection schematic and physical arrangement of strain gauges
Fig.3 Schematic of shaft sleeve assembly
Fig.4 Comparison of internal and external temperature of shaft sleeve at speed of 10 km/h
Fig.5 Calibration bench assembly
部件材料

密度/

(kg/mm3

弹性模量/Pa泊松比
传力板40 Cr7.82×10-92.06×10110.29
横臂45号钢7.85×10-92.06×10110.27
Table 2 Material parameters of transmission plate and cross arm
Fig.6 Stress nephogram of assembly of transmission plate and cross arm
Fig.7 Displacement nephogram of assembly of transmission plate and cross arm
序号

砝码质量

m/ kg

传感总成输出

电压Us/ mV

T40B扭矩传感器

输出电压Ul / mV

128.01 355.12-1 740.20
266.03 179.00-4 080.15
334.01 642.29-2 107.30
449.42 379.27-3 056.29
536.51 762.22-2 262.67
610.5514.18-660.16
715.0-696.61898.82
874.0-3 515.964 486.43
953.5-2 543.203 241.73
1021.0-1 001.111 263.44
119.0-431.85535.27
1240.0-1 903.682 421.85
1329.4-1 396.241 773.02
Table 3 Data of calibration test of sensing assembly
Fig.8 Calibration curve of sensing assembly
Fig.9 Installation diagram of sensing assembly
Fig.10 Test results of sensing assembly torque and wheel rim torque under variable vehicle speed
 
Fig.12 Relationship curve between sensing assembly torque and wheel rim torque under constant vehicle speed
[1]   杨翔宇,王刚,韩宗奇,等.基于能量流分析的汽车发动机与传动系匹配[J].汽车安全与节能学报,2015,6(1): 90-96. doi:10.3969/j.issn.1674-8484.2015.01.xx
YANG X Y, WANG G, HAN Z Q, et al. Automobile engine and powertrain matching based on energy flow analysis[J]. Journal of Automobile Safety and Energy Conservation, 2015, 6(1): 90-96.
doi: 10.3969/j.issn.1674-8484.2015.01.xx
[2]   LIVSHIZ M, KAO M, WILL A. Validation and calibration process of powertrain model for engine torque control development[C]//SAE World Congress & Exhibition, Detroit,2004-03-08. doi:10.4271/2004-01-0902 .
doi: 10.4271/2004-01-0902
[3]   HU D S, HU Y F, CHEN H. Model-based calibration for torque control system of gasoline engine[C]//2014 International Conference on Mechatronics and Control (ICMC). Jinzhou, Jul. 3-5, 2014.
[4]   DE NOLA F, GIARDIELLO G, GIMELLI A, et al. Reduction of the experimental effort in engine calibration by using neural networks and 1D engine simulation[J]. Energy Procedia, 2018, 148: 344-351.
[5]   RAGHUNATH G, FLATAU A B. Wireless magneto-elastic torque sensor system[C]//52nd Aerospace Sciences Meeting, Maryland, Jan. 13-17, 2014.
[6]   PIETRON G M, FUJII Y, KUCHARSKI J, et al. Development of magneto-elastic torque sensor for automatic transmission applications[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2013(2): 529-534.
[7]   MULLER B. Characterizing the quasi-static and dynamic response of a non-contact magneto-elastic torque sensor[D]. Maryland: University of Maryland, College Park, 2017.
[8]   CHEN C X, MA T H, JIN H. Calibration method of capacitive grating torque sensor based on phase difference[J]. Electrotehnica, Electronica, Automatica, 2014, 62(4): 79.
[9]   MUFTAH M H, HARIS S M, PETROCZKI K, et al. An improved strain gauge-based dynamic torque measurement method[J]. International Journal of Circuits, Systems and Signal Processing, 2013, 7(1): 66-73.
[10]   CHEN C X, MA T H, JIN H, et al. Torque and rotational speed sensor based on resistance and capacitive grating for rotational shaft of mechanical systems[J]. Mechanical Systems and Signal Processing, 2020, 142: 106737.
[11]   BHAJANTRI V S, BAJANTRI S C, SHINDOLKAR A M, et al. Design and analysis of composite drive shaft[J]. International Journal of Research in Engineering and Technology, 2014, 3(3): 738-745.
[12]   张振乾,彭程,孙意凡,等.联合收获机喂入量监测系统信号分析与处理[J].农业机械学报,2019,50():73-78. doi:10.6041/j.issn.1000-1298.2019.S0.012
ZHANG Z Q, PENG C, SUN Y F, et al. Signal analysis and processing of combine harvester feedrate monitoring system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(): 73-78.
doi: 10.6041/j.issn.1000-1298.2019.S0.012
[13]   张永祥,明廷锋,张帅.应变扭矩的测量不确定度分析[J].测试技术学报,2018,32(3):185-190. doi:10.3969/j.issn.1671-7449.2018.03.001
ZHANG Y X, MING T F, ZHANG S. Measurement uncertainty analysis of strain torque[J]. Journal of Testing Technology, 2018, 32(3): 185-190.
doi: 10.3969/j.issn.1671-7449.2018.03.001
[14]   赵永峰,王玉,赖富文,等.基于NFC的无源无线扭矩测量系统[J].传感技术学报,2021,34(7):989-994. doi:10.3969/j.issn.1004-1699.2021.07.022
ZHAO Y F, WANG Y, LAI F W, et al. Passive wireless torque measurement system based on NFC[J]. Journal of Sensor Technology, 2021, 34(7): 989-994.
doi: 10.3969/j.issn.1004-1699.2021.07.022
[15]   张振乾,孙意凡,刘仁杰,等.联合收获机喂入量监测系统设计与试验[J].农业机械学报,2019,50(6):85-92. doi:10.6041/j.issn.1000-1298.2019.06.009
ZHANG Z Q, SUN Y F, LIU R J, et al. Design and test of feed rate monitoring system for combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(6): 85-92.
doi: 10.6041/j.issn.1000-1298.2019.06.009
[16]   LIN C, SUN S X, YI J, et al. Accelerated adaptive super twisting sliding mode observer‐based drive shaft torque estimation for electric vehicle with automated manual transmission[J]. IET Intelligent Transport Systems, 2019, 13(1): 160-167.
[17]   滑广军,吴运新,唐宏宾,等.高温和冲击作用下结构负载测试方法研究及应用[J].中南大学学报(自然科学版),2011,42(7):1981-1985.
HUA G J, WU Y X, TANG H B, et al. Research and application of structural load testing methods under high temperature and impact[J]. Journal of Central South University (Science and Technology), 2011, 42(7): 1981-1985.
[18]   唐钰,张小龙,王恒,等.一种汽车传动系扭矩测试结构标定装置:ZL202220873702.0[P].2022-07-19.
TANG Y, ZHANG X L, WANG H, et al. A structural calibration device for torque testing of automotive powertrains: ZL202220873702.0[P]. 2022-07-19.
[19]   陶亮,张大山,张小龙,等.智能轮胎开发平台专用轮辋总成设计与试验[J].中国机械工程,2023,34(9):1111-1119. doi:10.3969/j.issn.1004-132X.2023.09.012
TAO L, ZHANG D S, ZHANG X L, et al. Design and testing of special rim assembly for smart tire development platform[J]. China Mechanical Engineering, 2023, 34(9): 1111-1119.
doi: 10.3969/j.issn.1004-132X.2023.09.012
[1] Zhijun WANG,Xiaotao ZHANG,Mengxiang LI. Research on decoupling algorithm of six-dimensional force sensor based on polynomial fitting[J]. Chinese Journal of Engineering Design, 2023, 30(5): 571-578.
[2] WANG Chen-xue, PING Xue-liang, XU Chao. Research on the kinematic parameter identification of robot arm based on the assistant location by stereo vision[J]. Chinese Journal of Engineering Design, 2018, 25(1): 27-34.
[3] YU Ben-Guo, WANG Jian-Zhong. Static spectrum analysis detection and its software implementation[J]. Chinese Journal of Engineering Design, 2009, 16(6): 469-472.
[4] XING Zhi-Wei, SUN Jian-Guang, WANG Li-Wen. Research on calibration device of testing vehicle for friction coefficient of runway[J]. Chinese Journal of Engineering Design, 2009, 16(3): 223-226.
[5] FENG Hao, HUA Liang, ZHANG Jian-Sheng, WANG Wan-Liang. Auto-detecting device of dial gauge based on ultrasonic motor[J]. Chinese Journal of Engineering Design, 2006, 13(3): 154-161.
[6] CONG Da-Cheng, YU Da-Yong, HAN Jun-Wei. Kinematics accuracy analysis and error compensation of Stewart platform[J]. Chinese Journal of Engineering Design, 2006, 13(3): 162-165.