Please wait a minute...
Chinese Journal of Engineering Design  2023, Vol. 30 Issue (6): 753-762    DOI: 10.3785/j.issn.1006-754X.2023.03.103
Modeling, Simulation, Analysis and Decision     
Simulation analysis of brake disc temperature field and brake pad wear of high-speed train under wheel-rail excitation
Haiyan ZHU1,2(),Jiachao DENG1,2,Qian XIAO1,2,Jie LI1,2,Yong YI1,2
1.State Key Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure, East China Jiaotong University, Nanchang 330013, China
2.Key Laboratory of Conveyance Equipment Ministry of Education, East China Jiaotong University, Nanchang 330013, China
Download: HTML     PDF(5503KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

A high-speed train dynamics model was established to study the effect of wheel rail excitation on the temperature distribution of brake discs and the surface wear of brake pads. The vertical and lateral vibration amplitudes of the brake disc under emergency braking conditions were obtained through dynamic simulation. The amplitudes were introduced into the finite element model of the brake disc thermal-mechanical coupling established by the direct coupling method as input condition. The temperature variation law of each node in the radial, axial and circumferential of the brake disc was compared and analyzed under the condition of with or without wheel-rail excitation. The ALE (arbitrary Lagrangian-Eulerian) mesh adaptive processing was performed on the surface of the brake pad based on the finite element model of brake disc thermal-mechanical coupling, combined with Umeshmotion wear subroutine, the calculation of the surface wear depth of the brake pad was realized. The influence of with or without wheel-rail excitation on the wear depth of the surface of the brake pad was compared and analyzed. The simulation results show that compared with no wheel-rail excitation, the temperature of radial, axial and circumferential nodes of brake disc decreases under wheel-rail excitation, and the circumferential nodes reach the highest temperature at the same time, and the time for radial and axial nodes to reach the highest temperature is shortened. Under the wheel-rail excitation, the wear depth of each node in the radial and circumferential of the surface of the brake pad increases, which increases the wear of the brake pad surface and reduces the brake pad service life. The results of the research can provide some reference for more accurate prediction of the service life of the brake pad.



Key wordshigh-speed train      wheel-rail excitation      brake disc      thermal-mechanical coupling      temperature field      wear     
Received: 10 January 2023      Published: 02 January 2024
CLC:  U 270.35  
Cite this article:

Haiyan ZHU,Jiachao DENG,Qian XIAO,Jie LI,Yong YI. Simulation analysis of brake disc temperature field and brake pad wear of high-speed train under wheel-rail excitation. Chinese Journal of Engineering Design, 2023, 30(6): 753-762.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2023.03.103     OR     https://www.zjujournals.com/gcsjxb/Y2023/V30/I6/753


轮轨激励下高速列车制动盘温度场及闸片磨损仿真分析

为了研究轮轨激励对制动盘温度场分布及闸片表面磨损的影响,建立了高速列车动力学模型。通过动力学仿真,得出紧急制动工况下制动盘垂向和横向振动幅值;将振幅作为输入条件,导入制动盘热-机耦合有限元模型,分析有、无轮轨激励时制动盘径向、轴向和周向各节点的温度变化规律。基于制动盘热-机耦合有限元模型,结合Umeshmotion磨损子程序,对闸片表面进行ALE车轮非线性临界速度网格自适应处理,实现闸片表面磨损深度的计算,并对比分析有、无轮轨激励对闸片表面磨损深度的影响。仿真结果表明:与无轮轨激励相比,在轮轨激励下制动盘径向、轴向和周向各节点温度降低,且周向各节点在同一时刻达到最高温度,径向和轴向各节点达到最高温度的时间缩短;闸片表面径向和周向各节点的磨损深度增大,加剧了闸片表面的磨损,减少其使用寿命。研究结果可以为更加精准地预测闸片使用寿命提供一定的参考。


关键词: 高速列车,  轮轨激励,  制动盘,  热机耦合,  温度场,  磨损 
Fig.1 Dynamics model of high-speed train
Fig.2 Nonlinear critical speed of wheels
Fig.3 Variation curve of brake disc vibration amplitude with time
摩擦副外半径内半径厚度
制动盘32016522
闸片31718120
Table 1 Structure parameters of brake disc and pad
参数名称制动盘闸片
杨氏模量/Pa2×10112×1011
泊松比0.2850.300
热传导系数/?W/(m?K)6174
热膨胀系数/K-11.16×10-51.1×10-5
比热/?J/(kg?K)745436
Table 2 Brake disc material parameters
Fig.4 3D model structure of brake disc and pad
Fig.5 Grid division of models of brake disc and brake pad
Fig.6 Cloud map of temperature distribution on surface of brake discs
Fig.7 Nodes distribution of brake disc in three directions
Fig.8 Variation curve of radial node temperature of brake disc with time
Fig.9 Variation curve of brake disc axial nodal temperature with time
Fig.10 Variation curve of brake disc circumferential node temperature with time
Fig.11 Adaptive grid area of ALE
Fig.12 Cloud map of wear distribution on brake pad surface
Fig.13 Node diagram of brake pad surface wear analysis
Fig.14 Wear depth of each node on surface of brake pad after braking is completed
[1]   郭静, 王忠民, 姚晓莎. 高速列车制动盘温度场的建模及分析[J]. 应用力学学报, 2016, 33(3): 407-413, 544-545.
GUO J, WANG Z M, YAO X S. Modeling and analysis of temperature field of high-speed train brake disc [J]. Chinese Journal of Applied Mechanics, 2016, 33(3): 407-413, 544-545.
[2]   李勇, 祝汉燕, 朱颖超. 高速列车制动盘瞬态温度场分析[J]. 制造业自动化, 2018, 40(3): 134-137, 141. doi:10.3969/j.issn.1009-0134.2018.03.035
LI Y, ZHU H Y, ZHU Y C. Simulation analysis on brake disc temperature field for a high-speed train [J]. Manufacturing Automation, 2018, 40(3): 134-137, 141.
doi: 10.3969/j.issn.1009-0134.2018.03.035
[3]   黄晓华, 商跃进, 王红, 等. 不同仿生散热筋的高速动车组制动盘温度场分析[J]. 机械研究与应用, 2019, 32(1): 37-41.
HUANG X H, SHANG Y J, WANG H, et al. Analysis of the transient temperature field of high-speed EMU brake disks with different bionic heat radiation ribs [J]. Mechanical Research & Application, 2019, 32(1): 37-41.
[4]   初明泽, 宿崇, 米小珍. 基于微元法的高速制动盘瞬态温度场仿真分析[J]. 制造业自动化, 2020, 42(3): 79-84. doi:10.3969/j.issn.1009-0134.2020.03.018
CHU M Z, SU C, MI X Z. Transient temperature field simulation analysis of highspeed brake disc based on infinitesimal element method [J]. Manufacturing Automation, 2020, 42(3): 79-84.
doi: 10.3969/j.issn.1009-0134.2020.03.018
[5]   BELHOCINE A. Thermomechanical modeling of disc brake contact phenomena [J]. FME Transactions, 2013, 41(1): 59-65.
[6]   YEVTUSHENKO A A, KUCIEJ M, GRZES P, et al. Temperature in the railway disc brake at a repetitive short-term mode of braking [J]. International Communications in Heat and Mass Transfer, 2017, 84: 102-109.
[7]   ADAMOWICZ A. Effect of convective cooling on temperature and thermal stresses in disk during repeated intermittent braking [J]. Journal of Friction and Wear, 2016, 37(2): 107-112.
[8]   YANG Y, CHAO Y, YE X L, et al. Analysis and optimization of thermal performance of brake disc of ultra-deep mine hoist [J]. Chinese Journal of Engineering Design, 2019, 26(1): 47-55.
[9]   张方宇, 桂良进, 范子杰. 盘式制动器热—应力—磨损耦合行为的数值模拟[J]. 汽车工程, 2014, 36(8): 984-988, 979.
ZHANG F Y, GUI L J, FAN Z J. Numerical simulation on the coupling behavior between thermal load contact stress and wear in a disc brake[J]. Automotive Engineering, 2014, 36(8): 984-988, 979.
[10]   张俊峰, 邓璘. 列车制动用Cu基粉末闸片材料摩擦磨损性能分析[J]. 粉末冶金工业, 2017, 27(2): 38-41.
ZHANG J F, DENG L. Analysis of friction and wear properties of copper-based powder brake linings of train braking [J]. Powder Metallurgy Industry, 2017, 27(2): 38-41.
[11]   ELZAYADY N, ELSOEUDY R. Microstructure and wear mechanisms investigation on the brake pad [J]. Journal of Materials Research and Technology, 2021, 11: 2314-2335.
[12]   LIU Y, WU Y, MA Y, et al. High temperature wear performance of laser cladding Co06 coating on high-speed train brake disc [J]. Applied Surface Science, 2019, 481: 761-766.
[13]   MUGNAINI M, ADDABBO T, FORT A, et al. Magnetic brakes material characterization under accelerated testing conditions [J]. Reliability Engineering & System Safety, 2020, 193: 106614.
[14]   HATAM A, KHALKHALI A. Simulation and sensitivity analysis of wear on the automotive brake pad [J]. Simulation Modelling Practice and Theory, 2018, 84: 106-123.
[15]   朱海燕, 曾庆涛, 王宇豪, 等. 高速列车动力学性能研究进展[J]. 交通运输工程学报, 2021, 21(3): 57-92. doi:10.19818/j.cnki.1671-1637.2021.03.004
ZHU H Y, ZENG Q T, WANG Y H, et al. Research progress on dynamics performance of high-speed train [J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 57-92.
doi: 10.19818/j.cnki.1671-1637.2021.03.004
[16]   朱海燕, 袁遥, 肖乾, 等. 钢轨波磨研究进展[J]. 交通运输工程学报, 2021, 21(3): 110-133.
ZHU H Y, YUAN Y, XIAO Q, et al. Research progress on rail corrugation [J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 110-133.
[17]   王磊, 钱坤才, 姚屏萍. CRH2型动车组用制动闸片瞬态温度场仿真分析[J]. 林业机械与木工设备, 2016, 44(3): 25-28. doi:10.3969/j.issn.2095-2953.2016.03.006
WANG L, QIAN K C, YAO P P. Simulation analysis of transient temperature field of brake pads for CRH2 EMU [J]. Forestry Machinery & Woodworking Equipment, 2016, 44(3): 25-28.
doi: 10.3969/j.issn.2095-2953.2016.03.006
[18]   乔磊, 马军, 张嘉鹭. 高速动车组盘式制动装置制动盘温度场仿真分析与研究[J]. 机械科学与技术, 2018, 37(12): 1956-1962.
QIAO L, MA J, ZHANG J L. Simulation on brake disc temperature field of disc brake device for high-speed EMU [J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(12): 1956-1962.
[19]   周素霞, 童欣, 孙宇铎, 等. 基于相变储热原理的高速列车制动盘散热研究[J]. 机械工程学报, 2022, 58(6): 202-210. doi:10.3901/jme.2022.06.202
ZHOU S X, TONG X, SUN Y D, et al. Research on new structure of high-speed train brake disc based on phase change heat storage principle[J]. Journal of Mechanical Engineering, 2022, 58(6): 202-210.
doi: 10.3901/jme.2022.06.202
[20]   吕雪梅, 王曦, 罗明生. 考虑接触热阻的高速列车制动盘热机耦合行为分析[J]. 机械工程学报, 2021, 57(22): 296-304. doi:10.3901/jme.2021.22.296
LV X M, WANG X, LUO M S. Analysis of thermal-mechanical coupling behavior of brake disc of high-speed trains considering thermal contact resistance [J]. Journal of Mechanical Engineering, 2021, 57(22): 296-304.
doi: 10.3901/jme.2021.22.296
[21]   王欣, 王国权, 陈勇. 高速列车盘式制动器散热筋结构散热研究[J]. 机车电传动, 2021(3): 94-99.
WANG X, WANG G Q, CHEN Y. Research on heat dissipation effect of radiator structure of disc brake for high-speed train [J]. Electric Drive for Locomotives, 2021(3): 94-99.
[22]   杨栋, 王思明, 许建玉. CRH3型动车组牵引制动模式曲线的算法研究[J]. 城市轨道交通研究, 2013, 16(12): 94-98.
YANG D, WANG S M, XU J Y. On algorithm of traction and braking mode curve for CRH3 multiple unit [J]. Urban Mass Transit, 2013, 16(12): 94-98.
[1] Donghai YUAN,Haixu ZHAO,Zhiping ZHAI,Baoyuan ZHANG,Yuezheng LAN. Analysis on hammer wear law and wear failure reliability based on CFD-DEM and Archard model coupling[J]. Chinese Journal of Engineering Design, 2023, 30(6): 746-752.
[2] Yi ZHANG,Siyang XIONG,Sipeng ZHONG,Zijie XIONG,Qiang YANG. Effect of sealing surface wear on the performance of V-shaped combined sealing ring[J]. Chinese Journal of Engineering Design, 2023, 30(2): 237-243.
[3] Hongtai XIE,Hong WANG,Wei CHAI. Design and simulation analysis of new wind resistance braking device for high-speed trains[J]. Chinese Journal of Engineering Design, 2023, 30(2): 244-253.
[4] Yi LI,Guo-hua CHEN,Ming XIA,Bo LI. Design and simulation optimization of motorized spindle cooling system[J]. Chinese Journal of Engineering Design, 2023, 30(1): 39-47.
[5] Jiang LIU,Zheng-ming XIAO,Long-long ZHANG,Wei-biao LIU. Transmission accuracy reliability analysis and parameter optimization of RV reducer considering cycloid gear wear[J]. Chinese Journal of Engineering Design, 2022, 29(6): 739-747.
[6] Xiao-hua ZHU,Cong LI,Wei-ji LIU,Bin TAN,Wen XU. Study on bottom hole thermal-fluid-solid coupling of PDC bit in strong abrasive formation[J]. Chinese Journal of Engineering Design, 2022, 29(4): 446-455.
[7] Shao-yu TANG,Jie WU,Hui ZHANG,Bing-bing DENG,Yu-ming HUANG,Hao HUANG. Simulation and experimental research on temperature field of multipole magnetorheological clutch[J]. Chinese Journal of Engineering Design, 2022, 29(4): 484-492.
[8] Jin-nan LU,Yang LIU,Lian-jie WANG,Run-kun YANG,Zhen-zhi DING. Research on shovel tooth wear detection based on improved Mask Scoring R-CNN[J]. Chinese Journal of Engineering Design, 2022, 29(3): 309-317.
[9] LUO Yan-yan, PAN Xiao-song, MA Xuan, WU Xiong-wei. Research on application of infrared thermal imaging technology in plug-in wear detection of electrical connector[J]. Chinese Journal of Engineering Design, 2021, 28(5): 615-624.
[10] LIU Shu-qin, LIU Ruo-chen, SUN Jian-zhong, ZHANG Jin-wu. Research on on-line electrostatic monitoring method for wear state of wind turbine gearbox[J]. Chinese Journal of Engineering Design, 2021, 28(2): 163-169.
[11] DENG Xiao-fan, REN Cheng-zu, CHEN Yang, CHEN Guang, CAI Zhi-jie, HE Ying-lun. Research on material selection of lapping tools for double-disc and linear-groove lapping method based on friction and wear experiment[J]. Chinese Journal of Engineering Design, 2020, 27(6): 720-728.
[12] MA Ya-chao, ZHANG Peng, HUANG Zhi-qiang, NIU Shi-wei, XIE Dou, DENG Rong. Prediction of dynamic wear trend of PDC bit under the influence of varying temperature and load[J]. Chinese Journal of Engineering Design, 2020, 27(5): 625-635.
[13] LIU Ruo-chen, XU Cheng, WANG Kui-yang, WANG Yi-min, SUN Jian-zhong. Research on performance parameters of new wear-site electrostatic sensor[J]. Chinese Journal of Engineering Design, 2020, 27(5): 645-653.
[14] WU Cong-kui, HE Bai-yan, YUAN Peng-fei. Thermal-structural analysis of hoop deployable antenna with metal hinges[J]. Chinese Journal of Engineering Design, 2020, 27(3): 349-356.
[15] YANG Ying, YE Xue-long, YE Chao. Analysis and optimization of thermal performance of brake disc of ultra deep mine hoist[J]. Chinese Journal of Engineering Design, 2019, 26(1): 47-55.