Please wait a minute...
Chin J Eng Design  2022, Vol. 29 Issue (3): 309-317    DOI: 10.3785/j.issn.1006-754X.2022.00.046
Design for Quality     
Research on shovel tooth wear detection based on improved Mask Scoring R-CNN
Jin-nan LU(),Yang LIU,Lian-jie WANG,Run-kun YANG,Zhen-zhi DING
College of Mechanical Engineering, Liaoning Technical University, Fuxin 123000, China
Download: HTML     PDF(4738KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to realize the real-time wear detection for shovel teeth during the working process of electric shovel, and prevent the mining efficiency of electric shovel from being affected by the shovel tooth wear, a shovel tooth instance segmentation model based on the improved Mask Scoring R-CNN (regional convolutional neural network) was proposed.Firstly, taking the ResNet-101 (residual network) and improved FPN (feature pyramid networks) as the backbone network, the semantic information and detail features of high and low feature layers were extracted and fused, and then the local feature layer was trimmed and normalized by combining with the ROI Align layer, so as to complete target detection and instance segmentation; then, based on the obtained shovel tooth segmentation effect image and binary mask graphic information, the pixel area of shovel tooth in the image after instance segmentation was calculated to judge its wear condition. The results showed that the mean pixel accuracy of the shovel tooth instance segmentation model with ResNet-101 and improved FPN as the backbone network was 90.76% and its mean intersection over union was 83.62% on the test set, which was 1.18% and 1.21% higher than that of the instance segmentation model with ResNet-101 and traditional FPN as the backbone network, respectively. Eight shovel tooth wear detection experiments were carried out at the electric shovel excavation site, and the fluctuation amplitude of detected wear degree of each tooth was less than 2%, and the mean square error was about 0.7, which indicated that the proposed instance segmentation model had good segmentation effect and stability for the shovel tooth, and basically met the requirements of wear detection. The research results can provide new ideas for the intelligent detection of shovel tooth wear state.



Key wordsshovel tooth      detail feature      instance segmentation      binary mask      wear detection     
Received: 17 September 2021      Published: 05 July 2022
CLC:  TH 39  
Cite this article:

Jin-nan LU,Yang LIU,Lian-jie WANG,Run-kun YANG,Zhen-zhi DING. Research on shovel tooth wear detection based on improved Mask Scoring R-CNN. Chin J Eng Design, 2022, 29(3): 309-317.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2022.00.046     OR     https://www.zjujournals.com/gcsjxb/Y2022/V29/I3/309


基于改进Mask Scoring R-CNN的铲齿磨损检测研究

为了实现在电铲工作过程中对铲齿磨损进行实时检测,防止因铲齿磨损而影响电铲开采效率,提出了一种基于改进Mask Scoring R-CNN(region convolutional neural network,区域卷积神经网络)的铲齿实例分割模型。首先,以ResNet-101(residual network, 残差网络)和改进的FPN(feature pyramid networks,特征金字塔网络)作为主干网络,提取高、低特征层的语义信息和细节特征并融合,结合ROI Align层对局部特征层进行裁剪和归一化处理,以完成目标检测与实例分割;然后,基于获取的铲齿分割效果图以及二值化掩码图形信息,计算实例分割后图像中铲齿部分的像素面积,以判断其磨损情况。结果表明,以ResNet-101和改进FPN为主干网络的铲齿实例分割模型在测试集上的平均像素精度为90.76%,平均交并比为83.62%,相比于以ResNet-101和传统FPN为主干网络的实例分割模型分别提升了1.18%和1.21%。在电铲采掘工作现场进行8次铲齿磨损检测实验,检测到的每颗铲齿的磨损程度波动幅度均小于2%,均方差为0.7左右,说明所提出的实例分割模型对铲齿有较好的分割效果和稳定性,基本满足磨损检测要求。研究结果可为铲齿磨损状态的智能化检测提供新思路。


关键词: 铲齿,  细节特征,  实例分割,  二值化掩码,  磨损检测 
Fig.1 Overall framework of instance segmentation model of shovel tooth based on improved Mask Scoring R-CNN
Fig.2 Structure diagram of residual module in ResNet-101
Fig.3 Shovel tooth feature map extracted based on ResNet-101
Fig.4 Structure of improved FPN
Fig.5 Instance segmentation network structure for shovel tooth
Fig.6 Mask regression network structure
Fig.7 Enhanced rendering of shovel tooth image
Fig.8 Instance segmentation and annotation results of shovel tooth image
Fig.9 Change curve of loss value of shovel tooth instance segmentation model based on different ResNet
Fig.10 Precision‒recall curve of shovel tooth instance segmentation model based on different backbone networks
主干网络Am/%Im/%t/s
Garb Cut算法89.7882.440.765
ResNet-50+FPN88.0480.370.282
ResNet-101+ FPN89.5882.410.347
ResNet-10+改进FPN90.7683.620.376
Table1 Performance comparison of shovel tooth instance segmentation models based on different backbone networks
Fig.11 Instance segmentation effect of shovel tooth based on improved Mask Scoring R-CNN
Fig.12 Calculation process of shovel tooth pixel area
Fig.13 Hardware platform of shovel tooth wear state detection system
Fig.14 Profile of each shovel tooth extracted in the first wear detection experiment
铲齿像素面积检测值/像素真实面积检测值/mm2磨损程度/%报警情况
1号10 186.5109 502.821 813.64
2号11 186.5120 252.620 35.17
3号11 679.0125 546.896 10.99
4号11 098.0119 301.263 15.92
5号10 448.5112 319.269 211.42
Table 2 Results of first shovel tooth wear detection experiment
Fig.15 Experiment results of shovel tooth wear detection
[1]   穆晓鹏,权龙,程珩,等.矿用电铲整机运行特性联合仿真研究[J].机械设计与制造,2021(5):8-13. doi:10.3969/j.issn.1001-3997.2021.05.003
MU Xiao-peng, QUAN Long, CHENG Heng, et al. Co-simulation research on operation characteristics of mining electric shovel[J]. Machinery Design & Manufacture, 2021(5): 8-13.
doi: 10.3969/j.issn.1001-3997.2021.05.003
[2]   宋浒,张利,许梦晗,等.基于形态学和小波变换的图像边缘检测方法[J].西南大学学报,2020,42(4):105-111. doi:10.13718/j.cnki.xdzk.2020.04.014
SONG Hu, ZHANG Li, XU Meng-han, et al. An image edge detection method based on morphology and wavelet transform[J]. Journal of Southwest University (Natural Science), 2020, 42(4): 105-111.
doi: 10.13718/j.cnki.xdzk.2020.04.014
[3]   LI Y, ZHANG J, GAO P, et al. Grab cut image segmentation based on image region[C]//IEEE International Conference on Image, Chongqing, Jun. 27-29, 2018. doi:10.1109/icivc.2018.8492818
doi: 10.1109/icivc.2018.8492818
[4]   薛岚燕,刘杜鹃,陈艺慧.基于Canny边缘检测和外观特征的微血管瘤检测方法[J].现代电子技术,2017,40(6):103-108. doi:10.16652/j.issn.1004-373x.2017.06.026
XUE Lan-yan, LIU Du-juan, CHEN Yi-hui. Microaneurysm detection method based on Canny edge detection and appearance feature[J]. Modern Electronics Technique, 2017, 40(6): 103-108.
doi: 10.16652/j.issn.1004-373x.2017.06.026
[5]   陈晓文,刘光帅,刘望华,等.结合LoG边缘检测和增强局部相位量化的模糊图像识别[J].计算机科学,2020,47(12):197-204. doi:10.11896/jsjkx.191000054
CHEN Xiao-wen, LIU Guang-shuai, LIU Wang-hua, et al. Blurred image recognition based on LoG edge detection and enhanced local phase quantization[J]. Computer Science, 2020, 47(12): 197-204.
doi: 10.11896/jsjkx.191000054
[6]   曹辉,杨理践,刘俊甫,等.基于数据融合的小波变换漏磁异常边缘检测[J].仪器仪表学报,2019,40(12):71-79. doi:10.19650/j.cnki.cjsi.J1905421
CAO Hui, YANG Li-jian, LIU Jun-fu, et al. Magnetic flux leakage anomaly edge detection based on data fusion and wavelet transformation[J]. Chinese Journal of Scientific Instrument, 2019, 40(12): 71-79.
doi: 10.19650/j.cnki.cjsi.J1905421
[7]   CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//European Conference on Computer Vision, Munich, Sep. 8-14, 2018. doi:10.1007/978-3-030-01234-2_49
doi: 10.1007/978-3-030-01234-2_49
[8]   ZOU K, CHEN X, WANG Y, et al. A modified U-Net with a specific data argumentation method for semantic segmentation of weed images in the field[J]. Computers and Electronics in Agriculture, 2021, 187: 106242. doi:10.1016/j.compag.2021.106242
doi: 10.1016/j.compag.2021.106242
[9]   蔡彪,沈宽,付金磊,等.基于Mask R-CNN的铸件X射线DR图像缺陷检测研究[J].仪器仪表学报,2020,41(3):61-69. doi:10.19650/j.cnki.cjsi.J1905908
CAI Biao, SHEN Kuan, FU Jin-lei, et al. Research on defect detection of X-ray DR images of casting based on Mask R-CNN[J]. Chinese Journal of Scientific Instrument, 2020, 41(3): 61-69.
doi: 10.19650/j.cnki.cjsi.J1905908
[10]   秦晓飞,盛凯,朱玥,等.基于注意力模型的人脸关键点检测算法[J].光学仪器,2020,42(2):45-49. doi:10.3969/j.issn.1005-5630.2020.02.008
QIN Xiao-fei, SHENG Kai, ZHU Yue, et al. Detection algorithm for key points on face based on attention model[J]. Optical Instrument, 2020, 42(2): 45-49.
doi: 10.3969/j.issn.1005-5630.2020.02.008
[11]   李晖晖,周康鹏,韩太初.基于CReLU和FPN改进的SSD舰船目标检测[J].仪器仪表学报,2020,41(4):183-190. doi:10.19650/j.cnki.cjsi.J2006122
LI Hui-hui, ZHOU Kang-peng, HAN Tai-chu. Ship object detection based on SSD improved with CReLU and FPN[J]. Chinese Journal of Scientific Instrument, 2020, 41(4): 183-190.
doi: 10.19650/j.cnki.cjsi.J2006122
[12]   YANG F, KO S, JO G. Visual tracking based on a unified tracking-and-detection framework with spatial-temporal consistency filtering[J]. Computers and Electrical Engineering, 2019, 80: 106453. doi:10.1016/j.compeleceng.2019.106453
doi: 10.1016/j.compeleceng.2019.106453
[13]   冯家文,张立民,邓向阳.基于多源融合FCN的图像分割[J].计算机应用研究,2018,35(9):2877-2880. doi:10.3969/j.issn.1001-3695.2018.09.075
FENG Jia-wen, ZHANG Li-min, DENG Xiang-yang. Image segmentation based on multi-source fusion FCN[J]. Application Research of Computers, 2018, 35(9): 2877-2880.
doi: 10.3969/j.issn.1001-3695.2018.09.075
[14]   GARCIA-GARCIA A, ORTS-ESCOLANO S, OPREA S, et al. A survey on deep learning techniques for image and video semantic segmentation[J]. Applied Soft Computing, 2018, 70: 41-65. doi:10.1016/j.asoc.2018.05.018
doi: 10.1016/j.asoc.2018.05.018
[15]   姜骞,刘亚东,方健,等.基于轮廓特征的电力设备红外和可见光图像配准方法[J].仪器仪表学报,2020,41(11):252-260. doi:10.19650/j.cnki.cjsi.J2006709
JIANG Qian, LIU Ya-dong, FANG Jian, et al. Registration method for power equipment infrared and visible images based on contour feature[J]. Chinese Journal of Scientific Instrument, 2020, 41(11): 252-260.
doi: 10.19650/j.cnki.cjsi.J2006709
[16]   LI C, GUO J, GUO C, et al. A hybrid method for underwater image correction[J]. Pattern Recognition Letters, 2017, 94: 62-67. doi:10.1016/j.patrec.2017.05.023
doi: 10.1016/j.patrec.2017.05.023
[17]   蒲恬,张子夜,彭真明.保持自然度的非均匀光照图像增强的Retinex算法[J].数据采集与处理,2021,36(1):76-84. doi:10.16337/j.1004-9037.2021.01.007
PU Tian, ZHANG Zi-ye, PENG Zhen-ming. Enhancing uneven lighting images with naturalness preserved Retinex algorithm[J]. Journal of Data Acquisition and Processing, 2021, 36(1): 76-84.
doi: 10.16337/j.1004-9037.2021.01.007
No related articles found!