Please wait a minute...
Chin J Eng Design  2022, Vol. 29 Issue (3): 300-308    DOI: 10.3785/j.issn.1006-754X.2022.00.034
Design for Quality     
Wing docking tolerance allocation based on key measurement features
Yong-de ZHANG1(),Qing WANG2(),Wei-feng YANG2
1.AVIC Xi'an Aircraft Industry Croup Company Ltd. , Xi'an 710089, China
2.Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(3766KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the problem that it is difficult to ensure the accuracy of wing docking during aircraft assembly, which affects the aerodynamic contour and flight stability of the aircraft, a tolerance allocation model based on the node which was measured data of key measurement features was established.Based on measurement aided assembly technology, the key measurement features of aircraft in assembly process were defined.The geometric relationship between key measurement features in wing docking was analyzed, and the measurement uncertainty of on-site measurement equipment was considered. On this basis, a tolerance allocation model with the measured data of key measurement features as nodes was established.The test results showed that the quality and efficiency of aircraft assembly could be significantly improved by using the tolerance allocation model to allocate the tolerances of installation angle, top inverse angle and symmetry of wing, and integrating the allocated tolerance information into the digital assembly system.The research results can provide certain theoretical guidance for the assembly feature definition and tolerance allocation in the docking process of aircraft wings.



Key wordswing docking      horizontal measurement      key feature      measurement uncertainty      tolerance modeling      tolerance allocation     
Received: 18 January 2021      Published: 05 July 2022
CLC:  V 262.4  
Corresponding Authors: Qing WANG     E-mail: zhangyongde_2007@163.com;wqing@zju.edu.cn
Cite this article:

Yong-de ZHANG,Qing WANG,Wei-feng YANG. Wing docking tolerance allocation based on key measurement features. Chin J Eng Design, 2022, 29(3): 300-308.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2022.00.034     OR     https://www.zjujournals.com/gcsjxb/Y2022/V29/I3/300


基于关键测量特征的机翼对接容差分配

针对在飞机装配过程中机翼对接准确度难以保证而影响飞机的气动外形和飞行平稳性的问题,建立了一种以关键测量特征的测量数据为节点的容差分配模型。基于测量辅助装配技术,对装配过程中飞机的关键测量特征进行定义。分析了机翼对接中关键测量特征间的几何关系,考虑了现场测量设备的测量不确定度,在此基础上建立了以关键测量特征的测量数据为节点的容差分配模型。试验结果表明,利用容差分配模型对机翼的安装角、上反角和对称性等进行容差分配,将分配的容差信息融入数字化装配系统,可以显著提高飞机装配的质量和效率。研究结果可以为飞机机翼对接过程中装配特征的定义和容差分配提供一定的理论指导。


关键词: 机翼对接,  水平测量,  关键特征,  测量不确定度,  容差建模,  容差分配 
Fig.1 Technical route for digital defining of key measurement features
Fig.2 Component feature extraction interface
Fig.3 Implementation effect schematic of mathemat ical model lightweight
Fig.4 Measurement schematic of T-Probe detector and laser tracker
Fig.5 Distribution schematic of horizontal measurement points on wing
Fig.6 Schematic of wing longitudinal deviation
Fig.7 Schematic of wing lateral deviation
Fig.8 Schematic of wing twist deviation
站位编号xyz
1-1 591.95810 399.660-1 395.025
2-321.78410 399.730-1 394.734
3-3 678.30010 037.150-1 394.889
4-2 433.8089 771.595-1 393.915
5-3 431.6959 905.397-1 393.931
6-3 589.9719 940.106-1 394.707
7-836.10910 536.925-1 393.979
8-1 916.2839 467.790-1 393.652
9-2 628.69112 182.489-1 395.553
10-2 819.15312 120.803-1 395.294
Table 1 Measured value of the first ERS point at 10 stations
测量项目计算项测量值及公差
安装角ΔZ10A#-11A#24.5±1.47
ΔZ10#-11#7.5±1.60
上反角ΔF10A#-12#374.7±2.21
ΔF10#-14#555±2.59
对称性ΔFZ对称性 12#0±3.49
ΔFX对称性 12#0±2.77
ΔFZ对称性 18#0±8.75
ΔFX对称性 18#0±5.86
Table 2 Horizontal measurement requirements in the process of wing docking of an aircraft
[1]   于勇,陶剑,范玉青.波音787飞机装配技术及其装配过程[J].航空制造技术,2009(14):48-51. doi:10.3969/j.issn.1671-833X.2009.14.005
YU Yong, TAO Jian, FAN Yu-qing. Assembly technology and process of Boeing 787 jet[J]. Aeronautical Manufacturing Technology, 2009(14): 48-51.
doi: 10.3969/j.issn.1671-833X.2009.14.005
[2]   GOTO K, FUJII T. Airplane fuel supply system and airplane wing pipeline assembly method: US06736354B2[P]. 2004-05-18.
[3]   尹峰,王巍,梁涛,等.基于关键特性的数字化容差分配技术研究[J].航空制造技术,2011(22):53-56,80. doi:10.3969/j.issn.1671-833X.2011.22.008
YIN Feng, WANG Wei, LIANG Tao, et al. Research of digital tolerance distribution technology based on key characteristics[J]. Aeronautical Manufacturing Technology, 2011(22): 53-56, 80.
doi: 10.3969/j.issn.1671-833X.2011.22.008
[4]   REQUICHA A A G, VOELCKER H B. Solid modeling: current status and research directions[J]. IEEE Computer Graphics & Applications, 1983, 3(7): 25-37. doi:10.1109/mcg.1983.263271
doi: 10.1109/mcg.1983.263271
[5]   陈哲涵,杜福洲,唐晓青.基于关键测量特性的飞机装配检测数据建模研究[J].航空学报,2012,33(11):2143-2152.
CHEN Zhe-han, DU Fu-zhou, TANG Xiao-qing. Key measurement characteristics based inspection data modeling for aircraft assembly[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11): 2143-2152.
[6]   郭洪杰.浅谈数字化测量技术在飞机装配中的应用[J].航空制造技术,2011(21):26-29. doi:10.3969/j.issn.1671-833X.2011.21.001
GUO Hong-jie. Development of digital measurement technology based on aircraft assembly[J]. Aeronautical Manufacturing Technology, 2011(21): 26-29.
doi: 10.3969/j.issn.1671-833X.2011.21.001
[7]   邹爱丽,王亮,李东升,等.数字化测量技术及系统在飞机装配中的应用[J].航空制造技术,2011(21):72-75. doi:10.3969/j.issn.1671-833X.2011.21.014
ZOU Ai-li, WANG Liang, LI Dong-sheng, et al. Application of digital measuring system in aircraft assembly[J]. Aeronautical Manufacturing Technology, 2011(21): 72-75.
doi: 10.3969/j.issn.1671-833X.2011.21.014
[8]   TRUCKS H E. Designing for economical production[M]. Dearborn: Society of Manufacturing Engineers, 1987: 15-32.
[9]   刘继红,庞英仲,邹成.基于关键特征的飞机大部件对接位姿调整技术[J].计算机集成制造系统,2013,19(5):1009-1014.
LIU Ji-hong, PANG Ying-zhong, ZOU Cheng. Adjusting position-orientation of large components based on key features[J]. Computer Integrated Manufacturing Systems, 2013, 19(5): 1009-1014.
[10]   宋晶.LSA162飞机机翼装配的质量控制[J].中国航班,2019(7):6.
SONG Jin. Quality control of wing assembly of LSA162 aircraft [J]. China Flights, 2019(7): 6.
[11]   王帅,曹岩,刘红军.基于DELMIA的机翼装配工艺规划研究[J].工程技术研究,2017(4):129-130. doi:10.3969/j.issn.1671-3818.2017.04.081
WANG Shuai, CAO Yan, LIU Hong-jun. Research on wing assembly process planning based on DELMIA[J]. Engineering and Technology Research, 2017(4): 129-130.
doi: 10.3969/j.issn.1671-3818.2017.04.081
[12]   LIU J, ZOU C. A multi-aspect simulation system for flexible aircraft wing assembly[C]//Proceedings of the First International Conference on Intelligent Robotics and Applications: Part II (ICIRA '08). Berlin: Springer-Verlag, 2008: 679-687. doi:10.1007/978-3-540-88518-4_73
doi: 10.1007/978-3-540-88518-4_73
[13]   程宝蕖.飞机制造协调准确度与容差分配[M].北京:国防工业出版社,1979:73-79. doi:10.4028/www.scientific.net/amm.52-54.1818
CHENG Bao-qu. Coordination accuracy and tolerance allocation in aircraft manufacturing[M]. Beijing: National Defense Industry Press, 1979: 73-79.
doi: 10.4028/www.scientific.net/amm.52-54.1818
[14]   周琳.机身段件连接协调控制点容差分配技术研究[D].南京:南京航空航天大学,2014:29-35.
ZHOU Lin. Research on tolerance allocation of coordination points oriented to aircraft fuselage assembly[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014: 29-35.
[15]   王恒,宁汝新,唐承统.三维装配尺寸链的自动生成[J].机械工程学报,2005,41(6):181-187. doi:10.3321/j.issn:0577-6686.2005.06.035
WANG Heng, NING Ru-xin, TANG Cheng-tong. Automatic generation of 3D assembly dimension chains[J]. Journal of Mechanical Engineering, 2005, 41(6): 181-187.
doi: 10.3321/j.issn:0577-6686.2005.06.035
[16]   曹衍龙,王移风,杨将新,等.基于可行稳健性的公差设计方法研究[J].浙江大学学报(工学版),2005,39(3):364-367.
CAO Yan-long, WANG Yi-feng, YANG Jiang-xin, et al. Study on feasibility robust tolerance design method[J]. Journal of Zhejiang University (Engineering Science), 2005, 39(3): 364-367.
[17]   TREACY P, OCHS J B, OZSOY T M, et al. Automated tolerance analysis for mechanical assemblies modeled with geometric features and relational data structure[J]. Computer Aided Design, 1991, 23(6): 444-453. doi:10.1016/0010-4485(91)90012-l
doi: 10.1016/0010-4485(91)90012-l
[18]   陈亚丽,田威,廖文和,等.基于MBD的飞机自动化装配孔工艺特征快速添加技术[J].航空制造技术,2016(23): 82-86.
CHEN Ya-li, TIAN Wei, LIAO Wen-he, et al. Quickly adding technology for aircraft automated assembly hole processing features based on MBD[J]. Aeronautical Manufacturing Technology, 2016(23): 82-86.
[19]   徐西会.基于3DCS的公差分析技术研究及应用[D].济南:山东大学,2012:17-28.
XU Xi-hui. Study of tolerance analysis method and application based on 3DCS[D]. Jinan: Shandong University, 2012: 17-28.
[20]   周瞳.飞机舱段对接装配容差分析建模及工艺优化[D].上海:上海交通大学,2011:19-28. doi:10.1007/s12204-011-1221-5
ZHOU Tong. The research on the tolerance analysis and process optimization of aircraft fuselage assembly[D]. Shanghai: Shanghai Jiaotong University, 2011: 19-28.
doi: 10.1007/s12204-011-1221-5
[21]   王彦喜,闵俊,刘刚.激光跟踪仪在飞机型架装配中的应用[J].航空制造技术,2010(19):92-94,97. doi:10.3969/j.issn.1671-833X.2010.19.013
WANG Yan-xi, MIN Jun, LIU Gang. Application of laser tracker in assembly jig manufacturing for aircraft[J]. Aeronautical Manufacturing Technology, 2010(19): 92-94, 97.
doi: 10.3969/j.issn.1671-833X.2010.19.013
[22]   国家质量技术监督局计量司.测量不确定度评定与表示指南[M].北京:中国计量出版社,2000:5-18.
Department of Measurement, State Bureau of Quality and Technical Supervision. Guidelines for evaluating and expressing of measurement uncertainty[M]. Beijing: China Metrology Press, 2000: 5-18.
[1] WANG Zhong-Yu, QIN Ping. Grey Estimation of Measurement Uncertainty[J]. Chin J Eng Design, 2000, 7(4): 89-91.
[2] WU Zhao-Tong. Review of Several Important Subjects in Quality Engineering[J]. Chin J Eng Design, 2000, 7(4): 1-4.