Please wait a minute...
Chin J Eng Design  2022, Vol. 29 Issue (6): 748-756    DOI: 10.3785/j.issn.1006-754X.2022.00.083
Modeling, Simulation, Analysis and Decision     
Magnetic field modeling and thrust analysis of ultra-precision large stroke Maxwell reluctance actuator
Xu ZHANG1(),Lei-jie LAI1,2(),Li-min ZHU3
1.School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
2.Shanghai Collaborative Innovation Center of Intelligent Manufacturing Robot Technology for Large Components, Shanghai 201620, China
3.State Key Laboratory of Mechanical System and Vibration, Shanghai Jiaotong University, Shanghai 200240, China
Download: HTML     PDF(3798KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to overcome the problems of low accuracy of the magnetic field and analytical thrust model of large stroke Maxwell reluctance actuator caused by the large magnetic flux leakage under large air gap and the uneven distribution and strong nonlinearity of magnetic field distribution in the air gap, the calculation method of three-dimensional magnetic flux leakage distribution of the reluctance actuator was improved by using the magnetic circuit modeling method considering the weighted magnetic flux leakage coefficient of integrated Gaussian function. Thus, an analytical model which could accurately describe the functional relationship between thrust and input current was obtained, which provided an important basis for the design and control of this kind of actuator. Firstly, the working magnetic circuit of the large stroke Maxwell reluctance actuator before and after considering magnetic flux leakage was established, and the function of permanent magnet bias magnetic circuit and the reason why it still had nonlinearity after using permanent magnet bias structure were analyzed. The analytical thrust model for large stroke Maxwell reluctance actuator was established by using the Ampere’s loop law, the Ohm’s law of magnetic circuit and the superposition of magnetic field. Then, a weighted magnetic flux leakage coefficient calculation method based on Gaussian distribution curve was proposed to optimize the analytical model, and the three-dimensional magnetic field distribution and magnetic flux leakage coefficient of the large stroke Maxwell reluctance actuator were analyzed and calculated by using the finite element simulation software, so that the analytical thrust model considering the weighted magnetic flux leakage coefficient was obtained. Finally, the thrust test system for large stroke Maxwell reluctance actuator was built, and the accuracy of the analytical model was verified by comparing the calculated thrust of analytical model before and after optimization with the simulated thrust and the measured thrust. The results showed that the root mean square error of the analytical model after optimization was only 11.1% of that before optimization. At the same time, the root mean square error between the calculated thrust of analytical model after optimization and the measured thrust was less than 0.6 N, which verified the high accuracy of the optimized model. The research results have certain significance and reference value for the design of new ultraprecision driving components in high-end micro/nano-manufacturing equipment and measuring instruments.



Key wordsultra-precision      Maxwell reluctance actuator      large stroke      three-dimensional magnetic field simulation      magnetic flux leakage coefficient     
Received: 10 March 2022      Published: 06 January 2023
CLC:  TM 352  
Corresponding Authors: Lei-jie LAI     E-mail: m010120207@sues.edu.cn;lailj@sues.edu.cn
Cite this article:

Xu ZHANG,Lei-jie LAI,Li-min ZHU. Magnetic field modeling and thrust analysis of ultra-precision large stroke Maxwell reluctance actuator. Chin J Eng Design, 2022, 29(6): 748-756.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2022.00.083     OR     https://www.zjujournals.com/gcsjxb/Y2022/V29/I6/748


超精密大行程麦克斯韦磁阻驱动器磁场建模与推力分析

为了克服大行程麦克斯韦磁阻驱动器在大气隙下漏磁大幅增加、气隙区磁场分布不均匀且非线性强烈等现象导致的磁场和推力解析模型精度较低等问题,利用考虑综合高斯函数的加权漏磁系数的磁路建模方法,改进了磁阻驱动器的三维漏磁分布计算方式,并得到了可准确描述其推力与输入电流函数关系的解析模型,从而为该类驱动器的设计及控制提供重要依据。首先,建立了大行程麦克斯韦磁阻驱动器考虑漏磁前后的工作磁路,分析了永磁偏置磁路的作用及使用永磁偏置结构后仍具有非线性的原因,并利用安培环路定律和磁路的欧姆定律以及磁场的可叠加性,建立了该磁阻驱动器的推力解析模型。然后,为了优化解析模型,提出了基于高斯曲线的加权漏磁系数计算方法,同时利用有限元仿真软件对大行程麦克斯韦磁阻驱动器的三维磁场分布及漏磁系数进行了分析计算,得到了考虑加权漏磁系数的推力解析模型。最后,搭建了大行程麦克斯韦磁阻驱动器推力测试系统,并通过对比优化前后解析模型计算推力与仿真推力和实测推力,验证了解析模型的准确性。结果表明,优化后解析模型的均方根误差仅为优化前的11.1%,其精度得到有效提升;同时,优化后解析模型计算推力与实测推力之间的均方根误差小于0.6 N,精度较高。研究结果对高端微纳制造装备与测量仪器中新型超精密驱动部件的设计有一定意义和参考价值。


关键词: 超精密,  麦克斯韦磁阻驱动器,  大行程,  三维磁场仿真,  漏磁系数 
Fig.1 Overall structure of large stroke Maxwell reluctance actuator
参数磁轭永磁体动子
长/mm1001518
宽/mm461515
高/mm151515
横截面尺寸/(mm×mm)15×1515×1515×15
Table 1 Structure dimensions of large stroke Maxwell reluctance actuator
Fig.2 Permanent magnetic bias principle of large stroke Maxwell reluctance actuator
Fig.3 Ideal bias magnetic circuit and ideal excitation magnetic circuit
Fig.4 Bias magnetic circuit and excitation magnetic circuit considering magnetic flux leakage
参数偏置磁路励磁磁路
永磁体材料Nd-Fe-B(N52)
磁轭材料Bao-steel-B50A47Bao-steel-B50A47
线圈匝数200
输入电流I/A2
边界条件自然边界自然边界
Table 2 Three-dimensional magnetic field simulation parameters of large stroke Maxwell reluctance actuator
Fig.5 Nephogram of magnetic induction intensity distribution of bias magnetic field and excitation magnetic field
Fig.6 Magnetic induction intensity distribution with superposition of bias magnetic field and excitation magnetic field
Fig.7 Magnetic flux in bias magnetic circuit and excitation magnetic circuit
Fig.8 Magnetic flux leakage coefficient in bias magnetic circuit and excitation magnetic circuit
Fig.9 Comparison between calculated thrust of analytical model before and after optimization and simulated thrust
Fig.10 Root mean square error between calculated thrust of analytical model before and after optimization and simulated thrust
Fig.11 Thrust test system of large stroke Maxwell reluctance actuator
Fig.12 Comparison between calculated thrust of analytical model before and after optimization and measured thrust
Fig.13 Root mean square error between calculated thrust of analytical model before and after optimization and measured thrust
[1]   LEE C, LEE J W, RYU S G, et al. Optimum design of a large area, flexure based XYθ mask alignment stage for a 12-inch wafer using grey relation analysis[J]. Robotics and Computer-Integrated Manufacturing, 2019, 58: 109-119. doi:10.1016/j.rcim.2019.02.005
doi: 10.1016/j.rcim.2019.02.005
[2]   TIAN Yan-ling, CAI Kun-hai, ZHANG Da-wei, et al. Development of a XYZ scanner for home-made atomic force microscope based on FPAA control [J]. Mechanical Systems and Signal Processing, 2019, 131: 222-242. doi:10.1016/j.ymssp.2019.05.057
doi: 10.1016/j.ymssp.2019.05.057
[3]   王念峰,张志远,张宪民,等.三种两自由度柔顺精密定位平台的性能对比与分析[J].机械工程学报,2018,54(13):102-109. doi:10.3901/jme.2018.13.102
WANG Nian-feng, ZHANG Zhi-yuan, ZHANG Xian-min, et al. Performance comparison and analysis of three 2-DOF compliant precision positioning stages[J]. Journal of Mechanical Engineering, 2018, 54(13): 102-109.
doi: 10.3901/jme.2018.13.102
[4]   李玄,周双武,路松,等.基于二级杠杆机构的二自由度微定位平台设计与分析[J].工程设计学报,2020,27(4):533-540. doi:10.3785/j.issn.1006-754X.2020.00.063
LI Xuan, ZHOU Shuang-wu, LU Song, et al. Design and analysis of two-DOF micro-positioning platform based on two-level lever mechanism[J]. Chinese Journal of Engineering Design, 2020, 27(4): 533-540
doi: 10.3785/j.issn.1006-754X.2020.00.063
[5]   KATALENIC A, BOEIJ J D, BUTLER H, et al. Linearization of a current-driven reluctance actuator with hysteresis compensation[J]. Mechatronics, 2013, 23(2): 163-171.
[6]   LU X D, TRUMPER D L. Ultrafast tool servos for diamond turning[J]. CIRP Annals-Manufacturing Technology, 2005, 54(1): 383-388.
[7]   HIEMSTRA D B, PARMAR G, AWTAR S. Performance tradeoffs posed by moving magnet actuators in flexure-based nanopositioning[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(1): 201-212.
[8]   ITO S, TROPPMAIR S, LINDNER B, et al. Long-range fast nanopositioner using nonlinearities of hybrid reluctance actuator for energy efficiency[J]. IEEE Transactions on Industrial Electronics, 2019, 66(4): 3051-3059.
[9]   ZHU Zhi-wei, CHEN Li, Suet TO. A novel direct drive electromagnetic XY nanopositioning stage[J]. CIRP Annals, 2021, 70(1): 415-418.
[10]   谢晓丹,王博超,吴丹.电磁驱动快速刀具伺服机构的电磁场和驱动力[J].清华大学学报(自然科学版),2008,48(8):72-75.
XIE Xiao-dan, WANG Bo-chao, WU Dan. Magneticfield and driving force characteristics for a fast electromagnetic tool servo[J]. Journal of Tsinghua University (Science and Technology), 2008, 48(8): 72-75.
[11]   CHEN Li, NIU Yu-han, YANG Xu, et al. A novel compliant nanopositioning stage driven by a normal-stressed electromagnetic actuator[J]. IEEE Transactions on Automation Science and Engineering, 2022, 19(4): 3039-3048. doi:10.1109/TASE.2021.3105683
doi: 10.1109/TASE.2021.3105683
[12]   GUTIERREZ H M, RO P I. Magnetic servo levitation by sliding-mode control of nonaffine systems with algebraic input invertibility[J]. IEEE Transactions on Industrial Electronics, 2005, 52(5): 1449-1455.
[13]   邹亮,李庆民,许家响,等.考虑漏磁效应的永磁饱和型故障限流器磁路建模与实验研究[J].中国电机工程学报,2012,32(21):137-145.
ZOU Liang, LI Qing-min, XU Jia-xiang, et al. Magnetic topology modeling and experimental study of permanent-magnet-biased saturation based fault current limiter with leakage flux effect[J]. Proceedings of the CSEE, 2012, 32(21): 137-145.
[14]   向洪岗,陈德桂,李兴文,等.基于三维磁场分析建立电磁铁等效磁路的研究[J].西安交通大学学报,2003,37(8):808-811. doi:10.3321/j.issn:0253-987X.2003.08.009
XIANG Hong-gang, CHEN De-gui, LI Xing-wen, et al. Construction of equivalent magnetic circuit for electromagnet based on 3-D magnetic field[J]. Journal of Xi’an Jiaotong University, 2003, 37(8): 808-811.
doi: 10.3321/j.issn:0253-987X.2003.08.009
[15]   CSENCSICS E, SCHLARP J, SCHITTER G. Bandwidth extension of hybrid-reluctance-force-based tip/tilt system by reduction of eddy currents[C]//2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Munich, Jul. 3-7, 2017.
[16]   ZHU Zi-hui, CHEN Li, NIU Yu-han, et al. Triaxial fast tool servo using hybrid electromagnetic-piezoelectric actuation[J]. IEEE Transactions on Industrial Electronics, 2022, 69(2): 1728-1738.
[17]   ITO S, TROPPMAIR S, CIGARINI F, et al. High-speed scanner with nanometer resolution using a hybrid reluctance force actuator[J]. IEEE Journal of Industry Applications, 2019, 8(2): 170-176.
[18]   ITO S, CIGARINI F, SCHITTER G. Flux-controlled hybrid reluctance actuator for high-precision scanning motion[J]. IEEE Transactions on Industrial Electronics, 2020, 67(11): 9593-9600.
[19]   李恒,朱煜,贾松涛,等.电磁式超精密微动工作台研究现状与方向[J].现代机械,2007(2):1-3. doi:10.3969/j.issn.1002-6886.2007.02.001
LI Heng, ZHU Yu, JIA Song-tao, et al. Research and development of ultra-precision magnetic stage[J]. Modern Machinery, 2007(2): 1-3.
doi: 10.3969/j.issn.1002-6886.2007.02.001
[1] Chao XIE,Yunzhuang CHEN,Guangnan SHI,Leijie LAI. Design and compliance analysis of large stroke flexible ball hinge with orthogonal reeds[J]. Chin J Eng Design, 2023, 30(5): 626-633.
[2] LI Shu-Huan. Design of micro-feeding tool holder used in turning machining[J]. Chin J Eng Design, 2006, 13(6): 410-415.
[3] CHEN Ya-Liang, FU Long-Zhu, MEI De-Qing, CHEN Zi-Chen. Design of PID vibration control system
for ultra-precision device
[J]. Chin J Eng Design, 2003, 10(1): 15-19.