|
|
Study on vibration characteristics of new quasi-square honeycomb sandwich structure with all edges simply supported |
LI Xiang1,2,3, WANG Yang2,3, TONG Guan4, CHEN Bo-wen3, HE Bin1,5 |
1. Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, China Three Gorges University, Yichang 443002, China;
2. College of Mechanical and Material Engineering, China Three Gorges University, Yichang 443002, China;
3. Hubei Zhijiang Xiajiang Mining Machinery Co., Ltd., Yichang 443002, China;
4. Fujian Transmission and Distribution Engineering Co., Ltd., Fuzhou 350013, China;
5. College of Mechanical and Electrical Engineering, Hubei Polytechnic University, Huangshi 435003, China |
|
|
Abstract The new quasi-square honeycomb is one kind of transitional form of hexagonal honeycomb. It is of great significance to study its equivalent elastic parameters and vibration characteristics. The differences of the in-plane equivalent elastic parameters between the quasi-square honeycomb core with the double wall thickness and equal wall thickness were analyzed through the revised Gibson formulas. And the vibration performance of all edges simply supported quasi-square honeycomb sandwich structure with two different wall thickness under the influence of different equivalent elastic parameters was analyzed through the classic laminate theory. A finite element model of the quasi-square honeycomb sandwich structure with different wall thickness was presented to analyze its vibration characteristics, and the simulation results were compared with the theoretical analysis results. The results showed that the numerical simulation results of equivalent elastic parameters were basically in agreement with the theoretical values. Under the same basic structure parameters of the honeycomb, the in-plane equivalent shear modulus, out-plane stiffness and equivalent density of the quasi-square honeycomb core with double wall thickness were larger than those of the quasi-square honeycomb core with equal wall thickness. The natural frequencies of the quasi-square honeycomb sandwich structure with double wall thickness was lower than that of the honeycomb with equal wall thickness in the low-order vibration mode and higher in the high-order vibration mode. The influence of the three main impact factors on the natural frequency of the sandwich structure were listed in descending order as the yoz-plane equivalent shear modulus, the equivalent density and the wall thickness of the quasi-square honeycomb core. Study results indicat that the natural frequency of the quasi-square honeycomb sandwich structure calculated by the classic laminate theory has preferably coherence with the numerical simulation results. The correctness of the equivalent elastic parameters of the quasi-square honeycomb sandwich core obtained by the modified Gibson formula is further proved. This vibration theory is extended to the feasibility of calculating the general honeycomb sandwich structure, which lays a foundation for expanding the vibration characteristics of other types of honeycomb sandwich structures.
|
Received: 11 September 2017
Published: 28 December 2018
|
|
四边简支新型类方形蜂窝夹层结构振动特性研究
新型类方形蜂窝是六边形蜂窝的一种过渡形式,对其等效弹性参数和振动特性的研究具有重要意义。采用改进的Gibson公式对比分析了双壁厚与等壁厚类方形蜂窝夹芯的面内等效弹性参数的差异,并应用经典层合板理论分析了不同等效弹性参数下2种壁厚类型的四边简支类方形蜂窝夹层结构的振动特性,基于有限元仿真技术分析了不同壁厚类方形蜂窝夹层结构的振动特性,并与理论分析结果进行对比。结果表明等效弹性参数的数值模拟结果与理论值基本吻合。在蜂窝基本结构参数相同的条件下,双壁厚类方形蜂窝夹芯的面内等效剪切模量、面外刚度和等效密度均比等壁厚类方形蜂窝夹芯大;在低阶振动模态下,双壁厚类方形蜂窝夹层结构的固有频率比等壁厚类方形蜂窝夹层结构的低,在高阶振动模态下,双壁厚类方形蜂窝夹层结构的固有频率比等壁厚类方形蜂窝夹层结构的高;影响夹层结构固有频率的3个主要因素所占权重由大到小依次为蜂窝夹芯yoz面等效剪切模量、蜂窝夹芯等效密度,蜂窝夹芯壁厚。研究结果表明采用经典层结构理论计算得到类方形蜂窝夹层结构的固有频率与数值仿真结果的一致性较好,这进一步证明了采用改进Gibson公式得到的类方形蜂窝夹芯等效弹性参数的正确性,同时证明了将该振动理论运用到一般蜂窝夹层结构研究的可行性,为扩展研究其他类型蜂窝夹层结构振动特性奠定了基础。
关键词:
蜂窝夹层结构振动,
等效弹性参数,
蜂窝夹芯壁厚,
模态分析,
固有频率
|
|
[[1]] |
ALLEN H G. Analysis and design structural sandwich panels[M]. Oxford:Pergamon Press, 1969:1-292.
|
|
|
[[2]] |
GIBSON L J, ASHBY M F. Cellular solids:structure and properties[M]. Cambridge:Cambridge University Press, 1999:1-536.
|
|
|
[[3]] |
杨亚政,杨嘉陵,曾涛,等.轻质多孔材料研究进展[J].力学季刊,2007,28(4):503-516. YANG Ya-zheng, YANG Jia-ling, ZENG Tao, et al. Progress in research work of light materials[J], Chinese Quarterly of Mechanics, 2007, 28(4):503-516.
|
|
|
[[4]] |
富明慧, 徐欧腾, 陈誉. 蜂窝芯层等效参数研究综述[J]. 材料导报, 2015, 29(3):127-134. FU Ming-hui, XU Ou-teng, CHEN Yu. An overview of equivalent parameters of honeycomb cores[J]. Materials Review, 2015, 29(3):127-134.
|
|
|
[[5]] |
GIBSON L J, ASHBY M F, SCHAJER G S, et al. The mechanics of two-dimensional cellular materials[J]. Proceedings of the Royal Society of London, 1982, 382:25-42.
|
|
|
[[6]] |
BURTON W S, NOOR A K. Assessment of continuum models for sandwich panel honeycomb cores[J]. Computer Methods in Applied Mechanics & Engineering, 1997, 145(3):341-360.
|
|
|
[[7]] |
王飞,庄守兵,虞吉林.用均匀化理论分析蜂窝结构的等效弹性参数[J].力学学报,2002,34(6):914-923. WANG Fei, ZHUANG Shou-bing, YU Ji-lin. Application of homogenization FEM to the equivalent elastic constants of honeycomb structures[J]. ACTA Mechanica Sinica, 2002, 34(6):914-923.
|
|
|
[[8]] |
SHI G, TONG P. Equivalent transverse shear stiffness of honeycomb cores[J]. International Journal of Solids & Structures, 1995, 32(10):1383-1393.
|
|
|
[[9]] |
王颖坚.蜂窝结构在面内剪力作用下的变形模式[J].北京大学学报(自然科学版),1991,27(3):301-307. WANG Ying-jian. Deformation models of honeycomb cell under in-plane shear[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 1991, 27(3):301-307.
|
|
|
[[10]] |
孙德强,张卫红,孙玉瑾.蜂窝铝芯的弹性模量和材料效率分析[J].力学与实践,2008,30(1):35-40. SUN De-qiang, ZHANG Wei-hong, SUN Yu-jin. Elastic moduli and material efficiency of aluminum honeycomb cores[J]. Mechanics in Engineering, 2008, 30(1):35-40.
|
|
|
[[11]] |
LIU J, CHENG Y S, LI R F, et al. A semi-analytical method for bending, buckling, and free vibration analyses of sandwich panels with square-honeycomb cores[J]. International Journal of Structural Stability and Dynamics, 2010, 10(1):127-151.
|
|
|
[[12]] |
任树伟,孟晗,辛锋先,等.方形蜂窝夹层曲板的振动特性研究[J].西安交通大学学报,2015,49(3):129-135. REN Shu-wei, MENG Han, XIN Feng-xian, et al. Vibration analysis of simply supported curved sandwich panels with square honeycomb cores[J]. Journal of Xi'an Jiaotong University, 2015, 49(3):129-135.
|
|
|
[[13]] |
邸馗,茅献彪.对边简支负泊松比蜂窝夹层板的弯曲自由振动[J].复合材料学报,2016,33(4):910-920. DI Kui, MAO Xian-biao. Free flexural vibration of honeycomb sandwich plate with negative Poisson's ratio simply supported on opposite edges[J]. Acta Materiae Compositae Sinica, 2016, 33(4):910-920.
|
|
|
[[14]] |
李永强,金志强,王薇,等.四边简支条件下对称蜂窝夹层板的弯曲振动分析[J].机械工程学报,2008,44(5):165-169. LI Yong-qiang, JIN Zhi-qiang, WANG Wei, et al. Flexural vibration analysis for symmetric honeycomb panels of simple support boundary conditions[J]. Journal of Mechanical Engineering, 2008, 44(5):165-169.
|
|
|
[[15]] |
李永强,李锋,何永亮.四边固支铝基蜂窝夹层板弯曲自由振动分析[J].复合材料学报,2011,28(3):210-216. LI Yong-qiang, LI Feng, HE Yong-liang. Flexural vibration analysis of honeycomb sandwich plate with completely clamped support[J]. Acta Materiae Compositae Sinica, 2011, 28(3):210-216.
|
|
|
[[16]] |
王盛春,邓兆祥,沈卫东,等.四边简支条件下正交各向异性蜂窝夹层板的固有特性分析[J].振动与冲击,2012,31(9):73-77. WANG Sheng-chun, DENG Zhao-xiang, SHEN Wei-dong, et al. Connatural characteristics analysis of rectangular orthotropic honeycomb sandwich panels with all edges simply supported[J]. Journal of Vibration and Shock, 2012, 31(9):73-77.
|
|
|
[[17]] |
李响.承载夹层复合材料的轻量化设计方法及其应用研究[D].武汉:武汉理工大学机电工程学院,2011:1-115. LI Xiang. Research on the method of lightweight design for loaded sandwich structure composite and its application[D]. Wuhan:Wuhan University of Technology, School of Mechanical and Electronic and Engineering, 2011:1-115.
|
|
|
[[18]] |
李响,周幼辉,童冠,等.超轻多孔类蜂窝夹心结构创新构型及其力学性能[J].西安交通大学学报,2014,48(9):88-94. LI Xiang, ZHOU You-hui, TONG Guan, et al. Innovating configuration and mechanical properties of the core for ultralight and porous quasi-honeycomb sandwich structure[J]. Journal of Xi'an Jiaotong University, 2014, 48(9):88-94.
|
|
|
[[19]] |
胡玉琴.铝蜂窝夹层板等效模型研究及数值分析[D].南京:南京航空航天大学航空航天学院,2008:1-65. HU Yu-qin. Equivalent models research and numerical analysis of aluminum honeycomb sandwich plates[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, College of Aerospace Engineering, 2008:1-65.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|