Please wait a minute...
Chinese Journal of Engineering Design  2007, Vol. 14 Issue (5): 369-373    DOI:
    
Study on deconvolution technique based on wavelet transform 
 QIAO  Hua-Wei, YANG  Ke-Ji
Institute of Modern Manufacture Engineering, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(351KB)
Export: BibTeX | EndNote (RIS)      

Abstract  To increase A-scan signals’ time resolution of thin multilayer composite materials in ultrasonic nondestructive testing (UNDT), a new approach of deconvolution technique based on wavelet multi-resolution analysis was proposed. To solve the drawbacks of limited resolution in time domain and poor stability of conventional deconvolution technique when ratio of signal and noise decreased,wavelet was used in deconvolution to decompose ultrasonic echo signal in variousbands. And then one of these bands was selected and after reconstructing this band, deconvolution was applied. Computer simulation results indicated that comparing with conventional deconvolution technique, this method improved a lot in increasing resolution in time domain (especially under low ratio of signal and noise).

Key wordsthin multilayer composite material      ultrasonic nondestructive testing (UNDT)      time resolution      wavelet transform     
Published: 28 August 2007
Cite this article:

QIAO Hua-Wei, YANG Ke-Ji. Study on deconvolution technique based on wavelet transform . Chinese Journal of Engineering Design, 2007, 14(5): 369-373.

URL:

https://www.zjujournals.com/gcsjxb/     OR     https://www.zjujournals.com/gcsjxb/Y2007/V14/I5/369


 基于小波变换的反卷积技术

为了提高薄层复合材料超声无损检测(UNDT)中A扫描信号时域分辨率,提出一种基于小波变换多分辨率分析的反卷积技术新方法。针对传统反卷积技术在信噪比(SNR)降低时提高时域分辨率能力有限以及稳定性较差的缺点,将小波变换应用到反卷积技术中,对超声脉冲回波信号进行不同频带内分解,选取其中一个低频带内信号单支重建后,将传统反卷积技术应用到所选信号进行处理。计算机模拟和实验结果表明,与传统反卷积技术相比,该方法在提高时域分辨率(特别是低信噪比时)能力方面有较大改观。

关键词: 薄层复合材料,  超声无损检测,  时域分辨率,  小波变换 
[1] LIU Hong-jun, BI Feng-rong, ZHANG Jian. Separation and identification of noise source at wheel loader's cab[J]. Chinese Journal of Engineering Design, 2015, 22(1): 66-71.
[2] SHEN Xiao-An. Denoising techniques for ultrasonic signals based on lifting wavelet transform[J]. Chinese Journal of Engineering Design, 2009, 16(3): 227-229.
[3] SHEN Xiao-An, YANG Ke-Ji. Split spectrum processing technique based on wavelet transform[J]. Chinese Journal of Engineering Design, 2008, 15(5): 361-364.