Please wait a minute...
Chinese Journal of Engineering Design  2009, Vol. 16 Issue (3): 227-229    DOI:
    
Denoising techniques for ultrasonic signals based on lifting wavelet transform
 SHEN  Xiao-An
West Branch of Zhejiang University of Technology, Quzhou 324000, China
Download: HTML     PDF(400KB)
Export: BibTeX | EndNote (RIS)      

Abstract  In order to enhance the signal to noise ratio (SNR) of fundamental ultrasonic echo signal for ultrasonic nondestructive testing (UNDT) and ultrasonic nondestructive evaluation (UNDE), a new denoising technique for ultrasonic signal based on lifting wavelet transform multi-resolution analysis was presented. On the basis of the analysis of shortcomings and principle of classical split spectrum (SSP) algorithm, original ultrasonic echo signals were decomposed into sub-bands through the proposed technique and then the noise was eliminated according to some signal and noise separating rule, which realized the aim of enhancing SNR. The experiment results indicate that the presented technique has high stability in denoising and increases the SNR of ultrasonic target echo signals.

Key wordsUNDT      SNR      split spectrum processing      lifting wavelet transform     
Published: 28 June 2009
Cite this article:

SHEN Xiao-An. Denoising techniques for ultrasonic signals based on lifting wavelet transform. Chinese Journal of Engineering Design, 2009, 16(3): 227-229.

URL:

https://www.zjujournals.com/gcsjxb/     OR     https://www.zjujournals.com/gcsjxb/Y2009/V16/I3/227


基于提升小波变换的超声信号消噪技术

为了提高超声无损检测(UNDT)和无损评价(UNDE)中基础数据的信噪比(SNR),提出了一种基于提升小波变换多分辨率分析的超声信号消噪新技术.在分析传统裂谱分析(SSP)方法原理及其局限性的基础上,通过采用提升小波变换多分辨率分析能力将原始超声回波信号进行子带分解,然后按照一定的信噪分离规则来消除噪声,达到提高信噪比的目的.实验结果表明,与传统裂谱分析方法相比,该方法增强了消噪性能的稳定性,提高了超声回波信号的信噪比.

关键词: 超声无损检测,  信噪比,  裂谱分析,  提升小波变换 
[1] XING Meng-long, LIU Jia-xin, LU Chun-guang, JIANG Yan-kun. Improvement and signal-to-noise ratio analysis of cooling fan for grader[J]. Chinese Journal of Engineering Design, 2017, 24(5): 563-571.
[2] SHEN Xiao-An, YANG Ke-Ji. Split spectrum processing technique based on wavelet transform[J]. Chinese Journal of Engineering Design, 2008, 15(5): 361-364.
[3] QIAO Hua-Wei, YANG Ke-Ji. Study on deconvolution technique based on wavelet transform [J]. Chinese Journal of Engineering Design, 2007, 14(5): 369-373.
[4] YANG Ke-Ji. A New Split Spectrum Processing Technique[J]. Chinese Journal of Engineering Design, 2000, 7(4): 131-133.