Please wait a minute...
Chinese Journal of Engineering Design  2003, Vol. 10 Issue (3): 131-135    DOI:
    
Slide—m odel M PCA approach with applications in fault detecting of m ultiVariable nonlinear process
 CHEN  Yong, LIANG  Jun
National Lab of Industrial Control Technology,Zhejiang University,Hangzhou 310027,China
Download: HTML     PDF(214KB)
Export: BibTeX | EndNote (RIS)      

Abstract  M ultiway principal component analysis (M PCA )is widely used in performance monitoring and fault diagnosis of batch processes.However,it could not be efficiently applied to a process with high nonlinear dynamics.A method combining M PCA and slide-model is developed to deal with this class of batch process.The experiment results for industrial batch process indicate that the method iS effective and available.

Key wordsmultiway principal component analysis (M PCA )      batch process performance      slidemodel      fault diagnosis      dynamic time warping(DTW )     
Published: 28 June 2003
Cite this article:

CHEN Yong, LIANG Jun. Slide—m odel M PCA approach with applications in fault detecting of m ultiVariable nonlinear process. Chinese Journal of Engineering Design, 2003, 10(3): 131-135.

URL:

https://www.zjujournals.com/gcsjxb/     OR     https://www.zjujournals.com/gcsjxb/Y2003/V10/I3/131


滑动模型MPCA在非线性系统故障监测与诊断中的应用

多向主元分析(MPCA)是一种应用于间歇生产过程故障监测与诊断的较为有效的方法,但由于其线性化建模特征以及本身的一些局限性,它在高度复杂的非线性系统的应用中往往难以保证故障诊断的准确性和实时性.结合MPCA方法的优缺点,提出一种滑动模型的MPCA方法,讨论了该方法的建模及其在故障监测与诊断中的应用,并采用对称式DTW算法解决了多元轨迹同步化的问题.在实际生产设备上的试验表明,该方法具有良好的精确性和实时性.

关键词: 多向主元分析,  间歇生产,  滑动模型,  故障诊断,  动态时间错位 
[1] Chao JI,Liang WANG,Xiao-jing WANG,Xiao-bing LI,Wen CAO. Design of cable tunnel fault warning system based on MSSA-SVM[J]. Chinese Journal of Engineering Design, 2023, 30(1): 109-116.
[2] WU Guo-pei, YU Yin-quan, TU Wen-bing. Review of research on fault diagnosis of permanent magnet synchronous motor[J]. Chinese Journal of Engineering Design, 2021, 28(5): 548-558.
[3] SHANG Zhi-wu, ZHOU Shi-qi. Research on micropipetting technology based on image monitoring[J]. Chinese Journal of Engineering Design, 2021, 28(4): 495-503.
[4] NI Hong-qi, JIN Chi, FENG Fei. Development of fault diagnosis system for corrugated compensator[J]. Chinese Journal of Engineering Design, 2019, 26(3): 354-363.
[5] MA Tian-bing, WANG Xiao-dong, DU Fei, WANG Xin-quan. Fault diagnosis for rigid guide based on GA-SVM[J]. Chinese Journal of Engineering Design, 2019, 26(2): 170-176.
[6] HU Yi-yao, ZHU Bin, ZHANG Wei, HE Wei, SHEN Ping-sheng. Design and implementation of knowledge base building tool software[J]. Chinese Journal of Engineering Design, 2018, 25(4): 367-373.
[7] LI Xiao-huo, WENG Zheng-yang, QIANG Ya-sen, SHI Shang-wei, LI Yan. Fault diagnosis of hydraulic breaking hammer based on Fruit Fly Algorithm optimized fuzzy RBF neural network[J]. Chinese Journal of Engineering Design, 2015, 22(6): 540-545.
[8] LI Ling-Ling, JING Li-Ting, MA Dong-Juan, LI Zhi-Gang. Improved evidence theory and its application in fault diagnosis of power system[J]. Chinese Journal of Engineering Design, 2012, 19(6): 485-488.
[9] HAN Hai-tao,MA Hong-guang,HAN Kun,ZHENG Geng-le. Multitone stimulus signal design for identifying volterra frequency domain kernels[J]. Chinese Journal of Engineering Design, 2012, 19(2): 123-127.
[10] HAO Zhi-Yong, LIU Wei, XIA Wei, YAN Chuang. Fault diagnosis of the fan with air suction based on BP neural network[J]. Chinese Journal of Engineering Design, 2012, 19(1): 57-60.
[11] HAN Hai-Tao, MA Hong-Guang, LI Fei, ZHANG Jia-Liang-. Research on nonlinear system based on output frequency response functions[J]. Chinese Journal of Engineering Design, 2011, 18(5): 373-376.
[12] GUO Yu-Xiu, NI Xiao-Hong, WANG Yu-Tian. Study on the fault diagnosis of rolling mills based
on the chaos weak signal detection method
[J]. Chinese Journal of Engineering Design, 2011, 18(3): 218-221.
[13] WANG Cheng-Gang, WANG Xue-Wei, YANG Zhi-Yong, ZENG Ru-Wei. Study on correlation algorithm of failure mode rates in testability modeling[J]. Chinese Journal of Engineering Design, 2009, 16(4): 252-255.
[14] WANG Zi-Ling, XU Ai-Qiang, NIU Shuang-Cheng. Research and application on multiple fault diagnosis strategy[J]. Chinese Journal of Engineering Design, 2009, 16(4): 281-286.
[15] CHEN Yong, LIANG Jun, LU Hao. Monitoring and fault diagnosis based on PCA for multivariable control system[J]. Chinese Journal of Engineering Design, 2002, 9(5): 257-260.