Please wait a minute...
Chinese Journal of Engineering Design  2002, Vol. 9 Issue (5): 257-260    DOI:
    
Monitoring and fault diagnosis based on PCA for multivariable control system
 CHEN  Yong, LIANG  Jun, LU  Hao
Institute of System Engineering,Zhejiang University,Hangzhou 310027,China
Download: HTML     PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Principal component analysis(PCA)is an effective method for process monitoring and fault diagnosis.PCA produces a compressed statistical model that gives linear combinations of the original variables that describe the major trends in a data set,and produces new variables that are uncorrelated with each other and are linear combinations of the original variables.The experiments results show that PCA is an efficient method to monitor performance of the process,and can detect faults resulted in change of product quality exactly.

Key wordsprincipal component analysis      multivariate statistical analysis      fault diagnosis      process monitoring     
Published: 28 December 2002
Cite this article:

CHEN Yong, LIANG Jun, LU Hao. Monitoring and fault diagnosis based on PCA for multivariable control system. Chinese Journal of Engineering Design, 2002, 9(5): 257-260.

URL:

https://www.zjujournals.com/gcsjxb/     OR     https://www.zjujournals.com/gcsjxb/Y2002/V9/I5/257


基于PCA的多变量控制系统的故障监测与诊断

主元分析(PCA)是一种能够对过程生产进行监测和质量控制的有效方法,在保证数据信息丢失最少的情况下,大大降低了原始数据空间的维数.利用PCA分析建模可以消除变量间的非线性关联,降低噪声影响.通过对某食品厂蒸煮设备控制流程进行大量试验表明,PCA 故障诊断模型能够有效地对设备生产进行监测,并能较准确及时地诊断设备运行中发生的故障.

关键词: 主元分析,  多元统计分析,  故障诊断,  过程监测 
[1] Chao JI,Liang WANG,Xiao-jing WANG,Xiao-bing LI,Wen CAO. Design of cable tunnel fault warning system based on MSSA-SVM[J]. Chinese Journal of Engineering Design, 2023, 30(1): 109-116.
[2] LAI Quan-bao, TAO Qing, HU Yu-ge, MENG Qing-feng. Multi-gesture accurate recognition based on artificial fish swarm algorithm-extreme learning machine[J]. Chinese Journal of Engineering Design, 2021, 28(6): 671-678.
[3] WU Guo-pei, YU Yin-quan, TU Wen-bing. Review of research on fault diagnosis of permanent magnet synchronous motor[J]. Chinese Journal of Engineering Design, 2021, 28(5): 548-558.
[4] SHANG Zhi-wu, ZHOU Shi-qi. Research on micropipetting technology based on image monitoring[J]. Chinese Journal of Engineering Design, 2021, 28(4): 495-503.
[5] NI Hong-qi, JIN Chi, FENG Fei. Development of fault diagnosis system for corrugated compensator[J]. Chinese Journal of Engineering Design, 2019, 26(3): 354-363.
[6] MA Tian-bing, WANG Xiao-dong, DU Fei, WANG Xin-quan. Fault diagnosis for rigid guide based on GA-SVM[J]. Chinese Journal of Engineering Design, 2019, 26(2): 170-176.
[7] HU Yi-yao, ZHU Bin, ZHANG Wei, HE Wei, SHEN Ping-sheng. Design and implementation of knowledge base building tool software[J]. Chinese Journal of Engineering Design, 2018, 25(4): 367-373.
[8] LI Xiao-huo, WENG Zheng-yang, QIANG Ya-sen, SHI Shang-wei, LI Yan. Fault diagnosis of hydraulic breaking hammer based on Fruit Fly Algorithm optimized fuzzy RBF neural network[J]. Chinese Journal of Engineering Design, 2015, 22(6): 540-545.
[9] LI Ling-Ling, JING Li-Ting, MA Dong-Juan, LI Zhi-Gang. Improved evidence theory and its application in fault diagnosis of power system[J]. Chinese Journal of Engineering Design, 2012, 19(6): 485-488.
[10] HAN Hai-tao,MA Hong-guang,HAN Kun,ZHENG Geng-le. Multitone stimulus signal design for identifying volterra frequency domain kernels[J]. Chinese Journal of Engineering Design, 2012, 19(2): 123-127.
[11] WU Shu-liang, CHEN Jian-hong, YANG Shan. Optimization of bolting scheme based on combination of principal component analysis and BP neural network[J]. Chinese Journal of Engineering Design, 2012, 19(2): 150-155.
[12] HAO Zhi-Yong, LIU Wei, XIA Wei, YAN Chuang. Fault diagnosis of the fan with air suction based on BP neural network[J]. Chinese Journal of Engineering Design, 2012, 19(1): 57-60.
[13] HAN Hai-Tao, MA Hong-Guang, LI Fei, ZHANG Jia-Liang-. Research on nonlinear system based on output frequency response functions[J]. Chinese Journal of Engineering Design, 2011, 18(5): 373-376.
[14] GUO Yu-Xiu, NI Xiao-Hong, WANG Yu-Tian. Study on the fault diagnosis of rolling mills based
on the chaos weak signal detection method
[J]. Chinese Journal of Engineering Design, 2011, 18(3): 218-221.
[15] WANG Cheng-Gang, WANG Xue-Wei, YANG Zhi-Yong, ZENG Ru-Wei. Study on correlation algorithm of failure mode rates in testability modeling[J]. Chinese Journal of Engineering Design, 2009, 16(4): 252-255.