| Theory and Method of Mechanical Design |
|
|
|
|
| Fault prediction method of pipeline blockage in wet spray trolley pumping system based on CNN-LSTM-Attention model |
Kaisong WANG1( ),Yiming WEI2,Wei TANG3,Xuhua GUO1,Zhaoyang LI3,Jun ZOU3 |
1.School of Mechatronics Engineering, Anhui University of Science and Technology, Huainan 232001, China 2.State Key Laboratory of Digital and Intelligent Technology for Unmanned Coal Mining, Anhui University of Science and Technology, Huainan 232001, China 3.State Key Laboratory of Fundamental Components of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China |
|
|
|
Abstract In the primary support stage of tunnel construction. The wet spray trolley pumping system is prone to pipeline blockage, which can lead to unplanned downtimes, construction delays and other issues. Therefore, it is urgent to enhance the capabilities of equipment failure prediction and operation maintenance. To address challenges including strong noise interference and insufficient complex feature extraction from long-term sequential data in fault prediction method of pipeline blockage, a pumping system pipeline blockage fault prediction model based on the CNN-LSTM-Attention model was proposed. Pumping pressure data were took as the prediction target and processed using interquartile range for outlier removal and Kalman filtering for data smoothing, ensuring the stability of input data under high-noise conditions. The model employed CNN (convolutional neural network) to extract local spatiotemporal features from pumping pressure data, integrated LSTM (long short-term memory) network to capture the long-term dynamic characteristics of pumping processes, and incorporated the Attention mechanism to adaptively weight the critical nodes of the fluctuating pressure, achieving high-precision pressure trend prediction. The experimental results demonstrated that the prediction performance of the proposed model was significantly superior to that of traditional models such as CNN, LSTM, and CNN-LSTM. Based on the model prediction results, a health status evaluation system for wet spray trolley pumping system was established, and its health status prediction platform was developed, effectively supporting the decision-making at the construction site.
|
|
Received: 29 May 2025
Published: 30 December 2025
|
|
|
基于CNN-LSTM-Attention模型的湿喷台车泵送系统堵管故障预测方法
在隧道初期支护中,湿喷台车泵送系统易堵管而引发非计划停机、施工延误等问题,因此亟须提升设备故障预测与运维能力。针对湿喷台车泵送系统堵管故障预测方法中存在的噪声干扰大、长时间序列数据的复杂特征难以充分捕捉等问题,提出了一种基于CNN-LSTM-Attention模型的泵送系统堵管故障预测模型。该模型以泵送压力为预测对象,通过四分位法剔除异常值并结合卡尔曼滤波进行数据平滑处理,以确保强噪声环境下输入数据的稳定性;通过CNN(convolutional neural network,卷积神经网络)提取泵送压力数据的局部时空特征,结合LSTM(long short-term memory,长短期记忆)网络捕捉泵送过程的长序列动态特性,并引入Attention(注意力)机制自适应加权波动压力的关键节点,以实现泵送压力趋势的高精度预测。实验结果表明,所提出模型的预测效果显著优于CNN、LSTM及CNN-LSTM等传统模型。在模型预测结果的基础上,构建了湿喷台车泵送系统健康状态评价体系,开发了健康状态预测平台,有效支持了施工现场的决策。
关键词:
泵送系统,
故障预测,
卷积神经网络,
长短期记忆网络,
注意力机制
|
|
| [[1]] |
邢宝全. 混凝土喷射台车在京沈客专隧道施工中的应用[J]. 科技资讯, 2024, 22(1): 126-129. XING B Q. Application of concrete spraying trolleys in the construction of Beijing-Shenyang passenger high-speed railway tunnels[J]. Science & Technology Information, 2024, 22(1): 126-129.
|
|
|
| [[2]] |
刘飞香. 钻爆法隧道施工装备技术进展与展望[J]. 现代隧道技术, 2024, 61(2): 190-202. LIU F X. Technological advancements and prospects of drill and blast tunnel construction equipment[J]. Modern Tunnelling Technology, 2024, 61(2): 190-202.
|
|
|
| [[3]] |
李捷. 混凝土湿喷台车的生产应用现状及技术创新发展方向[J]. 工程机械, 2022, 53(2): 100-104, 12. LI J. Practical application status and technological innovation development direction of concrete wet-spraying trolley[J]. Construction Machinery and Equipment, 2022, 53(2): 100-104, 12.
|
|
|
| [[4]] |
丁洋洋. 隧道混凝土湿喷机配套施工工艺[J]. 工程建设与设计, 2023(6): 111-113. DING Y Y. Construction technology of wet spray machine for tunnel concrete[J]. Construction & Design for Engineering, 2023(6): 111-113.
|
|
|
| [[5]] |
冯东亮, 林涛. 湿喷机在隧道施工中的应用[J]. 中小企业管理与科技, 2020(11): 158-159. FENG D L, LIN T. Application of wet spraying machine in tunnel engineering[J]. Management & Technology of SME, 2020(11): 158-159.
|
|
|
| [[6]] |
陈伟珂, 张铮燕, 龙昭琴. 基于尖点突变模型的地铁深基坑土压力预警阈值研究[J]. 中国安全科学学报, 2012, 22(4): 157-161. CHEN W K, ZHANG Z Y, LONG Z Q. Research on earth pressure warning threshold of subway deep excavation based on cusp catastrophe model[J]. China Safety Science Journal, 2012, 22(4): 157-161.
|
|
|
| [[7]] |
SHI J C, YI J Y, REN Y, et al. Fault diagnosis in a hydraulic directional valve using a two-stage multi-sensor information fusion[J]. Measurement, 2021, 179: 109460.
|
|
|
| [[8]] |
TANG H B, FU Z, HUANG Y. A fault diagnosis method for loose slipper failure of piston pump in construction machinery under changing load[J]. Applied Acoustics, 2021, 172: 107634.
|
|
|
| [[9]] |
刘禹, 戴永寿, 李立刚. 基于小样本音频信号的柱塞泵故障诊断[J]. 噪声与振动控制, 2023, 43(5): 142-147, 273. LIU Y, DAI Y S, LI L G. Fault diagnosis of plunger pumps based on audio signal of small samples[J]. Noise and Vibration Control, 2023, 43(5): 142-147, 273.
|
|
|
| [[10]] |
JIANG W L, LI Z B, ZHANG S, et al. Hydraulic pump fault diagnosis method based on EWT decomposition denoising and deep learning on cloud platform[J]. Shock and Vibration, 2021, 2021: 6674351.
|
|
|
| [[11]] |
魏晓良, 潮群, 陶建峰, 等. 基于LSTM和CNN的高速柱塞泵故障诊断[J]. 航空学报, 2021, 42(3): 423876. doi:10.7527/S1000-6893.2020.23876 WEI X L, CHAO Q, TAO J F, et al. Cavitation fault diagnosis method for high-speed plunger pumps based on LSTM and CNN[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 423876.
doi: 10.7527/S1000-6893.2020.23876
|
|
|
| [[12]] |
TANG S N, ZHU Y, YUAN S Q. An adaptive deep learning model towards fault diagnosis of hydraulic piston pump using pressure signal[J]. Engineering Failure Analysis, 2022, 138: 106300.
|
|
|
| [[13]] |
何瑶, 熊晓燕, 王伟杰, 等. 基于TFG-SVD-1DCNN的液压优先阀智能故障诊断方法[J]. 机电工程, 2025, 42(7): 1287-1293. HE Y, XIONG X Y, WANG W J, et al. Intelligent fault diagnosis method of hydraulic priority valve based on TFG-SVD-1DCNN[J]. Journal of Mechanical & Electrical Engineering, 2025, 42(7): 1287-1293.
|
|
|
| [[14]] |
孙伟. 湿喷台车的施工应用与常见问题处理方法[J]. 石材, 2023(7): 21-23. SUN W. Construction application of wet jet trolley and solutions to common problems[J]. Stone, 2023(7): 21-23.
|
|
|
| [[15]] |
刘计武. 浅谈混凝土湿喷机泵送系统问题及改进方案[J]. 建设机械技术与管理, 2019, 32(11): 63-65. LIU J W. Talking about the problems of pumping system of concrete wet sprayer and the improvement scheme[J]. Construction Machinery Technology & Management, 2019, 32(11): 63-65.
|
|
|
| [[16]] |
COHEN I, HUANG Y T, CHEN J D, et al. Noise reduction in speech processing[M]. Berlin: Springer, 2009: 15-20.
|
|
|
| [[17]] |
LANGFORD E. Quartiles in elementary statistics[J]. Journal of Statistics Education, 2006, 14(3): 1-20.
|
|
|
| [[18]] |
KHODARAHMI M, MAIHAMI V. A review on Kalman filter models[J]. Archives of Computational Methods in Engineering, 2023, 30(1): 727-747.
|
|
|
| [[19]] |
CHUA L O, ROSKA T. The CNN paradigm[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1993, 40(3): 147-156.
|
|
|
| [[20]] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|