|
|
[1] |
唐雁雁. 锂离子电池在电动汽车中的应用现状及发展综述[J]. 环境技术, 2023, 41(7): 94-100. TANG Y Y. Review on the application status and development of lithium-ion batteries in electric vehicles[J]. Environmental Technology, 2023, 41(7): 94-100.
|
|
|
[2] |
吕少茵, 曾维权, 杨洋, 等. 基于相变材料的动力电池热管理研究进展[J]. 新能源进展, 2020, 8(6): 493-501. LÜ S Y, ZENG W Q, YANG Y, et al. Research progress on power battery thermal management system based on phase change material[J]. Advances in New and Renewable Energy, 2020, 8(6): 493-501.
|
|
|
[3] |
尹丽琼, 韦安定, 韦财金. 大数据下电动汽车动力电池故障诊断技术现状与发展趋势[J]. 时代汽车, 2023(13): 154-156. YIN L Q, WEI A D, WEI C J. Status quo and development trend of electric vehicle power battery fault diagnosis technology under big data[J]. Auto Time, 2023(13): 154-156.
|
|
|
[4] |
RAUF H, KHALID M, ARSHAD N. Machine learning in state of health and remaining useful life estimation: theoretical and technological development in battery degradation modelling[J]. Renewable and Sustainable Energy Reviews, 2022, 156: 111903.
|
|
|
[5] |
LÜ G Z, ZHANG H, MIAO Q. RUL prediction of lithium-ion battery in early-cycle stage based on similar sample fusion under Lebesgue sampling framework[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 3511511.
|
|
|
[6] |
邓涛, 李志飞, 陈冰曲, 等. 基于改进型能量守恒SOC估算法的电动汽车三段式智能充电方式研究[J]. 工程设计学报, 2017, 24(3): 273-279. DENG T, LI Z F, CHEN B Q, et al. Research on three-stage intelligent charging method based on improved energy conservation SOC estimation algorithm for electric vehicle[J]. Chinese Journal of Engineering Design, 2017, 24(3): 273-279.
|
|
|
[7] |
李争, 罗晓瑞, 解波, 等. 基于光强感知的太阳能智慧跟踪系统设计[J]. 工程设计学报, 2022, 29(5): 627-633. LI Z, LUO X R, XIE B, et al. Design of solar intelligent tracking system based on light intensity perception[J]. Chinese Journal of Engineering Design, 2022, 29(5): 627-633.
|
|
|
[8] |
黄晓倩, 汪沨, 谭阳红, 等. 考虑V2G模式的电动汽车与可再生能源协同调度[J]. 工程设计学报, 2016, 23(1): 67-73. HUANG X Q, WANG F, TAN Y H, et al. Coordinated scheduling of electric vehicles and renewable generation considering vehicle-to-grid mode[J]. Chinese Journal of Engineering Design, 2016, 23(1): 67-73.
|
|
|
[9] |
周道亮. 基于机器学习的电池剩余使用寿命预测方法综述[J]. 电源技术, 2023, 47(9): 1118-1121. ZHOU D L. Research progress of prediction methods for remaining useful life of battery based on machine learning[J]. Chinese Journal of Power Sources, 2023, 47(9): 1118-1121.
|
|
|
[10] |
ZHONG R R, HU B T, FENG Y X, et al. Lithium-ion battery remaining useful life prediction: a federated learning-based approach[J]. Energy, Ecology and Environment, 2024, 9: 549-562.
|
|
|
[11] |
李远博, 王海瑞, 叶鑫, 等. 基于并行CNN-Self attention & LSTM的锂电池RUL间接预测[J]. 化工自动化及仪表, 2023, 50(4): 486-492, 556. LI Y B, WANG H R, YE X, et al. Indirect RUL prediction of lithium-ion battery based on parallel CNN-Self attention and LSTM[J]. Control and Instruments in Chemical Industry, 2023, 50(4): 486-492, 556.
|
|
|
[12] |
晋殿卫, 顾则宇, 张志宏. 锂电池健康度和剩余寿命预测算法研究[J]. 电力系统保护与控制, 2023, 51(1): 122-130. JIN D W, GU Z Y, ZHANG Z H. Lithium battery health degree and residual life prediction algorithm[J]. Power System Protection and Control, 2023, 51(1): 122-130.
|
|
|
[13] |
赵斐, 郭明, 刘学娟. 基于序列贝叶斯更新的锂电池剩余寿命预测[J]. 计算机集成制造系统, 2024, 30(2): 635-642. ZHAO F, GUO M, LIU X J. Lithium-ion battery remaining useful life prediction based on sequential Bayesian updating[J]. Computer Integrated Manufacturing Systems, 2024, 30(2): 635-642.
|
|
|
[14] |
刘月峰, 张公, 张晨荣, 等. 锂离子电池RUL预测方法综述[J]. 计算机工程, 2020, 46(4): 11-18. LIU Y F, ZHANG G, ZHANG C R, et al. Review of RUL prediction method for lithium-ion batteries[J]. Computer Engineering, 2020, 46(4): 11-18.
|
|
|
[15] |
张若可, 郭永芳, 余湘媛, 等. 基于数据驱动的锂离子电池RUL预测综述[J]. 电源学报, 2023, 21(5): 182-190. ZHANG R K, GUO Y F, YU X Y, et al. Review of data-driven RUL prediction for lithium-ion batteries[J]. Journal of Power Supply, 2023, 21(5): 182-190.
|
|
|
[16] |
舒星, 刘永刚, 申江卫, 等. 基于改进最小二乘支持向量机与Box-Cox变换的锂离子电池容量预测[J]. 机械工程学报, 2021, 57(14): 118-128. doi:10.3901/jme.2021.14.118 SHU X, LIU Y G, SHEN J W, et al. Capacity prediction for lithium-ion batteries based on improved least squares support vector machine and Box-Cox transformation[J]. Journal of Mechanical Engineering, 2021, 57(14): 118-128.
doi: 10.3901/jme.2021.14.118
|
|
|
[17] |
张浩, 胡昌华, 杜党波, 等. 多状态影响下基于Bi-LSTM网络的锂电池剩余寿命预测方法[J]. 电子学报, 2022, 50(3): 619-624. ZHANG H, HU C H, DU D B, et al. Remaining useful life prediction method of lithium-ion battery based on Bi-LSTM network under multi-state influence[J]. Acta Electronica Sinica, 2022, 50(3): 619-624.
|
|
|
[18] |
兰凤崇, 陈继开, 陈吉清, 等. 实车数据驱动的锂电池剩余使用寿命预测方法研究[J]. 汽车工程, 2023, 45(2): 175-182. LAN F C, CHEN J K, CHEN J Q, et al. Research on lithium battery remaining useful life prediction method driven by real vehicle data[J]. Automotive Engineering, 2023, 45(2): 175-182.
|
|
|
[19] |
岳家辉, 夏向阳, 蒋戴宇, 等. 基于电压数据片段混合模型的锂离子电池剩余寿命预测与健康状态估计[J]. 中国电力, 2023, 56(7): 163-174. YUE J H, XIA X Y, JIANG D Y, et al. Remaining useful life prediction and state of health estimation of lithium-ion batteries based on voltage data segment hybrid model[J]. Electric Power, 2023, 56(7): 163-174.
|
|
|
[20] |
于沛, 王常乐. 基于局部均值分解和极限学习机的锂电池剩余寿命预测[J]. 电气技术, 2023, 24(1): 23-28. YU P, WANG C L. Remaining life prediction of lithium-ion battery based on local mean decomposition and extreme learning machine[J]. Electrical Engineering, 2023, 24(1): 23-28.
|
|
|
[21] |
刘芊彤, 邢远秀. 基于VMD-PSO-GRU模型的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2023, 12(1): 236-246. LIU Q T, XING Y X. Remaining life prediction of lithium-ion battery based on VMD-PSO-GRU model[J]. Energy Storage Science and Technology, 2023, 12(1): 236-246.
|
|
|
[22] |
刘泽, 张闯, 齐磊, 等. 基于CNN-BiLSTM的锂电池剩余使用寿命概率密度预测[J]. 电源技术, 2023, 47(1): 57-61. LIU Z, ZHANG C, QI L, et al. Prediction of probability density of remaining useful life of lithium ion battery based on CNN-BiLSTM[J]. Chinese Journal of Power Sources, 2023, 47(1): 57-61.
|
|
|
[23] |
武明虎, 岳程鹏, 张凡, 等. 多尺度分解下GRU-MLR组合的锂电池剩余使用寿命预测方法[J]. 储能科学与技术, 2023, 12(7): 2220-2228. WU M H, YUE C P, ZHANG F, et al. Combined GRU-MLR method for predicting the remaining useful life of lithium batteries via multiscale decomposition[J]. Energy Storage Science and Technology, 2023, 12(7): 2220-2228.
|
|
|
[24] |
吴忠强, 胡晓宇, 马博岩, 等. 基于PF-LSTM的锂电池剩余使用寿命预测[J]. 计量学报, 2023, 44(6): 939-947. WU Z Q, HU X Y, MA B Y, et al. Prediction of the remaining useful life of lithium-ion batteries based on PF-LSTM[J]. Acta Metrologica Sinica, 2023, 44(6): 939-947.
|
|
|
[25] |
王升晖, 田庆, 刘力豪, 等. 融合注意力机制的CNN-GRU动车组蓄电池SOC估算方法[J]. 控制与信息技术, 2023(5): 83-90. WANG S H, TIAN Q, LIU L H, et al. CNN-GRU battery SOC estimation method fused with attention mechanism for electric multiple units[J]. Control and Information Technology, 2023(5): 83-90.
|
|
|
[26] |
耿鑫月, 胡昌华, 郑建飞, 等. 双时间尺度下基于Transformer的锂电池剩余寿命预测[J]. 空间控制技术与应用, 2023, 49(4): 119-126. GENG X Y, HU C H, ZHENG J F, et al. Remaining useful life prediction of lithium batteries based on Transformer under the dual time scales[J]. Aerospace Control and Application, 2023, 49(4): 119-126.
|
|
|
[27] |
王朋凯, 张新燕, 张光昊. 基于ResNet-Bi-LSTM-Attention的锂离子电池剩余使用寿命预测[J]. 储能科学与技术, 2023, 12(4): 1215-1222. WANG P K, ZHANG X Y, ZHANG G H. Remaining useful life prediction of lithium-ion batteries based on ResNet-Bi-LSTM-Attention model[J]. Energy Storage Science and Technology, 2023, 12(4): 1215-1222.
|
|
|
[28] |
梁海峰, 袁芃, 高亚静. 基于CNN-Bi-LSTM网络的锂离子电池剩余使用寿命预测[J]. 电力自动化设备, 2021, 41(10): 213-219. LIANG H F, YUAN P, GAO Y J. Remaining useful life prediction of lithium-ion battery based on CNN-Bi-LSTM network[J]. Electric Power Automation Equipment, 2021, 41(10): 213-219.
|
|
|
[29] |
高德欣, 刘欣, 杨清. 基于卷积神经网络与双向长短时融合的锂离子电池剩余使用寿命预测[J]. 信息与控制, 2022, 51(3): 318-329, 360. GAO D X, LIU X, YANG Q. Remaining useful life prediction of lithium-ion battery based on CNN and BiLSTM fusion[J]. Information and Control, 2022, 51(3): 318-329, 360.
|
|
|
[30] |
周雅夫, 史宏宇. 面向实车数据的电动汽车电池退役轨迹预测[J]. 太阳能学报, 2022, 43(5): 510-517. ZHOU Y F, SHI H Y. Battery retirement trajectory prediction of electric vehicle based on real vehicle data[J]. Acta Energiae Solaris Sinica, 2022, 43(5): 510-517.
|
|
|
[31] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, Jun. 27-30, 2016.
|
|
|
[32] |
GUO X F, WANG K Z, YAO S, et al. RUL prediction of lithium ion battery based on CEEMDAN-CNN BiLSTM model[J]. Energy Reports, 2023, 9(): 1299-1306.
|
|
|