Please wait a minute...
Chinese Journal of Engineering Design  2025, Vol. 32 Issue (5): 655-663    DOI: 10.3785/j.issn.1006-754X.2025.05.124
Robotic and Mechanism Design     
Research on stiffness and end deformation of nuclear related operation robot
Junxia JIANG(),Yuansong ZHANG,Xiaoou ZHONG
School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(2806KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Due to the relatively large length of the gear transmission chain and self weight of the nuclear related operation robot, in order to evaluate the end deformation of the robot caused by self weight and load for design optimization and deformation compensation, it is necessary to study the stiffness and end deformation of the robot. Firstly, by analyzing the structure and transmission principle of the nuclear related operation robot, based on the D-H (Denavit-Hartenberg) method, a robot linkage coordinate system considering joint bias was established, and a robot kinematic model was established. Secondly, in response to the joint torques and end deformation under the self weight and load, a solution method was proposed that treated the robot's transmission joints as flexible components to calculate the joint torsional stiffness, and calculated the robot's linkage stiffness based on the Bernoulli-Euler beam assumption theory. The robot's end deformation model was comprehensively obtained. Finally, the robot's end deformation was simulated and analyzed using the finite element method, and the accuracy of the proposed end deformation model was verified through testing.The proposed end deformation modeling method of the robot has certain reference value for the design optimization and end deformation compensation of the robots.



Key wordsnuclear related operation robot      fully gear coupled transmission      rigidity      end deformation     
Received: 15 March 2025      Published: 31 October 2025
CLC:  TH 89  
Cite this article:

Junxia JIANG,Yuansong ZHANG,Xiaoou ZHONG. Research on stiffness and end deformation of nuclear related operation robot. Chinese Journal of Engineering Design, 2025, 32(5): 655-663.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2025.05.124     OR     https://www.zjujournals.com/gcsjxb/Y2025/V32/I5/655


涉核作业机器人刚度与末端变形研究

涉核作业机器人的齿轮传动链较长,自重较大。为了评估自重和负载导致的机器人末端变形情况,以进行设计优化和变形补偿,需要研究机器人刚度与末端变形。首先,通过分析涉核作业机器人的结构及传动原理,基于D-H(Denavit-Hartenberg)法设立了考虑关节偏置的机器人连杆坐标系,并进一步建立了机器人运动学模型;其次,针对机器人因自重和负载作用产生的关节力矩和末端变形,提出了一种将机器人传动关节视为柔性部件来求解关节扭转刚度、基于伯努利-欧拉梁假设理论求解机器人连杆刚度的求解方法,综合得到了机器人末端变形模型;最后,通过有限元方法对机器人末端变形进行仿真分析,并进行了实验测试,验证了末端变形模型的准确性。所提出的机器人末端变形建模方法对机器人的设计优化和末端变形补偿具有一定的借鉴价值。


关键词: 涉核作业机器人,  全齿轮耦合传动,  刚度,  末端变形 
Fig.1 Structure and transmission principle of nuclear related operation robot
Fig.2 Structure of transmission system of robot
Fig.3 Link age coordinate system of robot
连杆αi-1/ (°)ai-1/mmdi /mmθi / (°)
11800d1θ1 (90)
29000θ2 (90)
30a2-d3θ3
4180a3d4θ4 (90)
5900d5θ5
6900d6θ6
Table 1 Linkage D-H parameters of robot
Fig.4 Schematic of mass and centroid of each part of robot
各部分名称质量质心所在坐标系质心坐标
肩转部分m1P1{1}(0, 0, p1z )
肩摆部分m2P2{2}(p2x, 0, p2z )
肘摆部分m3P3{3}(p3x, 0, p3z )
腕摆部分m4P4{4}(0, 0, p4z )
腕转部分m5P5{5}(0, p5y, p5z )
Table 2 Centroid coordinates of each part of robot
Fig.5 Meshing stiffness curve for a single pair of gear teeth within a meshing cycle
Fig.6 Deformation of connecting rod
Fig.7 End deformation nephogram of robot under self-weight action
Fig.8 Robot poses
Fig.9 End deformation amount of robot
 
[[1]]   SCHNEIDER M, FROGGATT A, HAZEMANN J, et al. The world nuclear industry status report 2023[R]. IAEA, 2023. [2025-03-01]. https://www.earthtrack.net/document/ world-nuclear-industry-status-report-2023.
[[2]]   肖雨生. 中国核电发展与乏燃料贮存及后处理的关系[J]. 电工技术, 2020(18): 24-25, 57.
XIAO Y S. Relationship between China's nuclear power development and spent fuel storage and reprocessing[J]. Electric Engineering, 2020(18): 24-25, 57.
[[3]]   TU C Y, CHEN K T, TING K E, et al. The planning strategy of robotics technology for nuclear decommissioning in Taiwan[J]. Nuclear Engineering and Technology, 2024, 56(1): 64-69.
[[4]]   金丁灿, 蒋君侠, 来建良, 等. 后处理全齿轮传动机械臂的设计[J]. 浙江大学学报(工学版), 2022, 56(5): 864-872.
JIN D C, JIANG J X, LAI J L, et al. Design of gearing chain-based manipulator for post-processing[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(5): 864-872.
[[5]]   JIANG J X, DONG Q, LI Y, et al. A study on the stiffness of the end of the suspended master-slave remote control manipulator[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44(10): 483.
[[6]]   陈思喆, 陆燕. 核工业用机械手[J]. 国外核新闻, 2017(12): 22-26.
CHEN S Z, LU Y. Manipulator for nuclear industry[J]. Foreign Nuclear News, 2017(12): 22-26.
[[7]]   DONG C L, LIU H T, YUE W, et al. Stiffness modeling and analysis of a novel 5-DOF hybrid robot[J]. Mechanism and Machine Theory, 2018, 125: 80-93.
[[8]]   KLIMCHIK A, PASHKEVICH A, CHABLAT D. Fundamentals of manipulator stiffness modeling using matrix structural analysis[J]. Mechanism and Machine Theory, 2019, 133: 365-394.
[[9]]   MEKAOUCHE A, CHAPELLE F, BALANDRAUD X. FEM-based generation of stiffness maps[J]. IEEE Transactions on Robotics, 2015, 31(1): 217-222.
[[10]]   DUMAS C, CARO S, CHERIF M, et al. Joint stiffness identification of industrial serial robots[J]. Robotica, 2012, 30(4): 649-659.
[[11]]   WANG X H, ZHANG D W, ZHAO C, et al. Optimal design of lightweight serial robots by integrating topology optimization and parametric system optimization[J]. Mechanism and Machine Theory, 2019, 132: 48-65.
[[12]]   ABELE E, WEIGOLD M, ROTHENBÜCHER S. Modeling and identification of an industrial robot for machining applications[J]. CIRP Annals, 2007, 56(1): 387-390.
[[13]]   CHEN S F, KAO I. Conservative congruence transformation for joint and cartesian stiffness matrices of robotic hands and fingers[J]. The International Journal of Robotics Research, 2000, 19(9): 835-847.
[[14]]   ALICI G, SHIRINZADEH B. Enhanced stiffness modeling, identification and characterization for robot manipulators[J]. IEEE Transactions on Robotics, 2005, 21(4): 554-564.
[[15]]   KIM S H, MIN B K. Joint compliance error compensation for robot manipulator using body frame[J]. International Journal of Precision Engineering and Manufacturing, 2020, 21(6): 1017-1023.
[[16]]   郭英杰,顾钒,董辉跃, 等. 压脚压紧力作用下的机器人变形预测和补偿[J]. 浙江大学学报(工学版), 2020, 54(8): 1457-1465.
GUO Y J, GU F, DONG H Y, et al. Prediction and compensation of robot deformation under pressure force of pressure foot[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(8): 1457-1465.
[[17]]   王一, 刘常杰, 任永杰, 等. 工业坐标测量机器人定位误差补偿技术[J]. 机械工程学报, 2011, 47(15): 31-36. doi:10.3901/jme.2011.15.031
WANG Y, LIU C J, REN Y J, et al. Compensation for positioning error of industrial coordinate measurement robot[J]. Journal of Mechanical Engineering, 2011, 47(15): 31-36.
doi: 10.3901/jme.2011.15.031
[[18]]   孙龙飞,房立金,梁风勇. 新型工业机器人结构设计及其全域刚度预估方法[J]. 机器人, 2018, 40(5): 673-684.
SUN L F, FANG L J, LIANG F Y. Structure design and global stiffness prediction method of a novel industrial robot[J]. Robot, 2018, 40(5): 673-684.
[[19]]   张永贵, 刘晨荣, 刘鹏. 6R工业机器人刚度分析[J]. 机械设计与制造, 2015(2): 257-260.
ZHANG Y G, LIU C R, LIU P. 6R industrial robot stiffness analysis[J]. Machinery Design & Manufacture, 2015(2): 257-260.
[[20]]   莫超亮. 六自由度工业机器人运动学参数误差分析与标定方法研究[D]. 南宁: 广西大学, 2018.
MO C L. Error analysis and calibration methods Research of kinematic parameters for 6-DOF industrial robot[D]. Nanning: Guangxi University, 2018.
[[21]]   王旭浩. 7R 6-DOF型喷涂机器人设计及关键技术研究[D]. 天津: 天津大学, 2019.
WANG X H. Design and key technology research of 7R 6-DOF spraying robot[D]. Tianjin: Tianjin University, 2019.
[1] WEN Zheng-Fang, ZHANG Jing-Xu, ZHANG Li-Min. Research of five-degree-of-freedom adjustment mechanism[J]. Chinese Journal of Engineering Design, 2010, 17(6): 473-478.