Please wait a minute...
Chinese Journal of Engineering Design  2025, Vol. 32 Issue (5): 720-734    DOI: 10.3785/j.issn.1006-754X.2025.05.115
Mechanical parts and equipment design     
Experimental study on the process of cutting into rock samples by full-section rectangular roadheader cutterhead
Qiang LI1,2(),Songyong LIU1(),Yan WANG1
1.School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China
2.School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China
Download: HTML     PDF(10593KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to achieve rapid and efficient full-section one-time forming of rectangular roadways, it is imperative to develop a full-section rectangular roadheader. For this purpose, by combining numerical analysis and motion trajectory simulation, a Reuleaux triangular cutterhead driven by an eccentric shaft planetary gear was designed for the full-section rectangular roadheader, and the test prototype was developed to conduct experimental study on the process of the cutterhead cutting into rock samples, achieving the one-time cutting and forming of a rectangular full-section by a single cutterhead. Firstly, the forming principle of rectangular cutting for the designed cutterhead was analyzed, and the perimeter and area difference rates between the vertex trajectory and the standard square were obtained. Then, in order to study the cutting characteristics of the cutterhead during the process of cutting into rock samples, a full-section rectangular cutting test bench was built, and cutting tests were conducted on the central fishtail cutter and edge cutting tool during the process of cutting into rock samples. The experimental results indicated that during the process of cutting into rock samples with the central fishtail cutter, the propulsion oil pressure, cutting torque and Y-direction vibration all showed a fluctuating increase, and their fluctuation positions were basically the same. In the low propulsion speed range (v=3?5 mm/min), as the propulsion speed increased, the growth rate of propulsion oil pressure, cutting torque and Y-direction vibration increased rapidly. In the high propulsion speed range (v=5?14 mm/min), as the propulsion speed increased, the growth rate of propulsion oil pressure, cutting torque and Y-direction vibration slowed down. Among the vibrations in the X, Y, and Z directions, the Y-direction vibration was the most representative. During the process of cutting into rock samples with the edge cutting tool, the propulsion oil pressure increased with fluctuations, but the cutting torque decreased with fluctuations due to the collaborative rock breaking of multiple tools. When the same tools cut into rock samples, the greater the strength of rock samples, the greater the cutting torque and propulsion oil pressure required by tools. When different tools cut into rock samples, the difference in cutting torque was relatively large. The average vibration generated during the process of cutting into rock samples by edge cutting tools was smaller than that of central fishtail cutters. When the compressive strength of the rock sample was 6.515?15.639 MPa, the propulsion oil pressure required to achieve full-section rectangular cutting was 3.443?3.662 MPa, the cutting torque was 44.440?49.545 N·m, and the generated Y-direction vibration acceleration was 0.006 5?0.018 0 m/s2. The research results verified the feasibility of rectangular cutting by eccentric shaft planetary gear-driven Reuleaux triangular cutterhead in practical engineering applications, which lay a foundation for the development of full-section rectangular roadheader prototypes.



Key wordsfull-section rectangular roadheader      cutterhead      cutting into rock sample      central fishtail cutter      edge cutting tool     
Received: 20 December 2024      Published: 31 October 2025
CLC:  TD 421  
Corresponding Authors: Songyong LIU     E-mail: liqiang1205@163.com;liusongyong@163.com
Cite this article:

Qiang LI,Songyong LIU,Yan WANG. Experimental study on the process of cutting into rock samples by full-section rectangular roadheader cutterhead. Chinese Journal of Engineering Design, 2025, 32(5): 720-734.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2025.05.115     OR     https://www.zjujournals.com/gcsjxb/Y2025/V32/I5/720


全断面矩形掘进机刀盘截入岩样过程试验研究

为实现快速、高效的矩形巷道全断面一次成形,开发全断面矩形掘进机势在必行。为此,基于数形分析与运动轨迹仿真相结合的方法,设计了一种偏心轴行星齿轮驱动的勒洛三角形全断面矩形掘进机刀盘,并研制了试验样机,进行了刀盘截入岩样过程试验研究,实现了单刀盘矩形全断面一次截割成形。首先,分析了所设计刀盘矩形截割的成形原理,得到了其顶点轨迹与标准正方形的周长和面积差异率。然后,为了研究刀盘截入岩样过程中的截割特性,搭建了全断面矩形截割试验台,开展了中心鱼尾刀、边缘刀具截入岩样过程的截割试验。试验结果表明:在中心鱼尾刀截入岩样过程中,推进油压、截割扭矩、Y向振动均呈波动式增大,且三者波动的位置基本一致;在低推进速度阶段(v=3~5 mm/min),随着推进速度的增大,推进油压、截割扭矩、Y向振动的增速较快;在高推进速度阶段(v=5~14 mm/min),随着推进速度的增大,推进油压、截割扭矩、Y向振动的增速变缓;在XYZ三向振动中,Y向振动最具代表性。在边缘刀具截入岩样过程中,推进油压呈波动式增大,但截割扭矩因多刀具协同破岩而呈波动式减小。当同类型刀具截入岩样时,岩样强度越大,刀具所需的截割扭矩、推进油压越大;当不同类型刀具截入岩样时,截割扭矩的差值较大;边缘刀具截入岩样过程中产生的平均振动比中心鱼尾刀小。当岩样抗压强度为6.515~15.639 MPa时,实现全断面矩形截割所需的推进油压为3.443~3.662 MPa,截割扭矩为44.440~49.545 N·m,产生的Y向振动加速度为0.006 5~0.018 0 m/s2。研究结果验证了在实际工程应用中采用偏心轴行星齿轮驱动的勒洛三角形刀盘实现矩形截割的可行性,为全断面矩形掘进机工程样机的研发奠定了基础。


关键词: 全断面矩形掘进机,  刀盘,  截入岩样,  中心鱼尾刀,  边缘刀具 
Fig.1 Existing structure forms of full-section rectangular roadheader cutterhead
Fig.2 Spoke-type retractable dual-cutterhead structure
Fig.3 Five-cutter milling full-section rectangular rapid roadheader
Fig.4 Schematic of motion process of Reuleaux triangle in the square
Fig.5 Working principle of cutterhead and its motion trajectory simulation results
Fig.6 Design scheme of body structure of cutterhead cutting test bench
Fig.7 Physical picture of cutterhead cutting test bench
Fig.8 Connection and arrangement of sensors
Fig.9 Rock samples
岩样配比(水泥∶石膏∶河砂)弹性模量/GPa抗压强度/MPa抗拉强度/MPa泊松比
岩样11∶1∶21.44015.6391.0620.143
岩样21∶1∶30.4096.5150.4800.105
Table 1 Determination results of mechanical properties of rock samples
Fig.10 Experimental data in the process of central fishtail cutter cutting into rock sample 1 (n=6 r/min, v=4.74 mm/min)
Fig.11 Vibration data in the process of central fishtail cutter cutting into rock sample 1 (n=6 r/min)
Fig.12 Experimental data in the process of central fishtail cutter cutting into rock sample 1 under different propulsion speeds (n=6 r/min)
Fig.13 Experimental data in the process of central fishtail cutter cutting into rock sample 2 (n=6 r/min, v=9.36 mm/min)
Fig.14 Experimental data in the process of edge cutting tool cutting into rock samples (n=6 r/min)
Fig.15 Experimental data in the process of edge cutting tool cutting into rock sample 2 under different propulsion speeds (n=6 r/min)
Fig.16 Statistical results of experimental data in the process of cutting into rock samples with different types of tools
Fig.17 Cutting sections of rock samples and tool path
对比项周长/mm面积/mm2周长差异率/%面积差异率/%
实际轮廓(岩样1)1 962.31265 956.362.303.65
实际轮廓(岩样2)1 996.02278 932.244.068.71
仿真轮廓1 918.22256 581.74
Table 2 Comparison of actual contour and simulated contour of cutting section of rock samples
刀盘优缺点截割断面/(mm×mm)

适用岩样抗压

强度/MPa

截割扭矩/(kN·m)刀盘示意图

数据

来源

辐条伸缩式双刀盘刀柄可自动伸缩,全断面分步截割成形,旋转截割与冲击破岩混合作用,但驱动磨损和噪声大4 020×3 0202.250~27.53097.33~113.27文献[18]
前后复合截割双刀盘全断面先后完成截割,重复截割区域较大1 900×1 900≤18.39064.33文献[45]
偏心轴行星齿轮驱动的勒洛三角形刀盘单刀盘全断面一次截割成形,无需不同类型刀盘重复截割2 000×2 00026.060~62.55611.38~12.68本文
Table 3 Comparison between designed cutterhead and other existing rectangular cutterheads
 
 
[[1]]   吕建中, 楼如岳. 城市交通矩形地下通道掘进机技术的研究与应用[J]. 中国市政工程, 2003(1): 39-40, 44.
LÜ J Z, LOU R Y. Study and application of entry-driving machine technology for rectangular underground passage of urban traffic[J]. China Municipal Engineering, 2003(1): 39-40, 44.
[[2]]   中国煤炭工业协会. 煤炭工业“十四五”安全高效煤矿建设指导意见[EB/OL]. (2021-12-07) [2025-01-10]. .
China National Coal Association. Guiding opinions on the construction of safe and efficient coal mines during the 14th Five-Year Plan period[EB/OL]. (2021-12-07) [2025-01-10]. .
[[3]]   ZHAO T C, DING W Q, QIAO Y F, et al. A large-scale synchronous grouting test for a quasi-rectangular shield tunnel: observation, analysis and interpretation[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2019, 91: 103018.
[[4]]   LIU X, LIU Z, YE Y H, et al. Mechanical behavior of quasi-rectangular segmental tunnel linings: further insights from full-scale ring tests[J]. Tunnelling and Underground Space Technology, 2018, 79: 304-318.
[[5]]   童碧, 陈建本, 孙涛. 小型巷道全断面掘进机快速施工关键技术与应用[J]. 煤炭科学技术, 2023, 51(4): 185-197.
TONG B, CHEN J B, SUN T. Key technology and application of small-sized full-section boring machine for rapid construction[J]. Coal Science and Technology, 2023, 51(4): 185-197.
[[6]]   阳旭. 全断面隧道掘进机在煤矿领域新技术应用[J]. 工程机械, 2024, 55(5): 88-94, 259.
YANG X. New technology application of full face tunnel boring machine in coal mine field[J]. Construction Machinery and Equipment, 2024, 55(5): 88-94, 259.
[[7]]   刘峰, 曹文君, 张建明, 等. 我国煤炭工业科技创新进展及“十四五” 发展方向[J]. 煤炭学报, 2021, 46(1): 1-15.
LIU F, CAO W J, ZHANG J M, et al. Current technological innovation and development direction of the 14th Five-Year Plan period in China coal industry[J]. Journal of China Coal Society, 2021, 46(1): 1-15.
[[8]]   LI J B. Key technologies and applications of the design and manufacturing of non-circular TBMs[J]. Engineering, 2017, 3(6): 905-914.
[[9]]   KELEŞ S. Cutting performance assessment of a medium weight roadheader at Çayırhan coal mine[D]. Ankara: Middle East Technical University, 2005.
[[10]]   李建斌. 中国隧道掘进机技术进展与展望[J]. 现代隧道技术, 2024, 61(2): 178-189.
LI J B. Advances and prospects of tunnel boring machine technology in China[J]. Modern Tunnelling Technology, 2024, 61(2): 178-189.
[[11]]   何恩光, 任志强, 叶龙. 类矩形全断面煤矿巷道掘进机研制与应用[J]. 建筑机械化, 2023, 44(4): 87-91.
HE E G, REN Z Q, YE L. Development and application of tunnel boring machine for quasi-rectangular full-face coal mine roadway[J]. Construction Mechanization, 2023, 44(4): 87-91.
[[12]]   中国城市轨道交通协会. 城市轨道交通2021年度统计和分析报告[EB/OL]. (2022-04-22) [2025-01-10]. .
China Urban Rail Transit Association. Statistical and analysis report on urban rail transit 2021 [EB/OL]. (2022-04-22) [2025-01-10]. .
[[13]]   董荣宝. 全断面矩形掘进机机载锚杆机液压系统及防护措施的研究[J]. 机床与液压, 2023, 51(4): 123-126.
DONG R B. Research on hydraulic system and protection measures for mounted roofbolter of full-section rectangular roadheader[J]. Machine Tool & Hydraulics, 2023, 51(4): 123-126.
[[14]]   NAKAMURA H, KUBOTA T, FURUKAWA M, et al. Unified construction of running track tunnel and crossover tunnel for subway by rectangular shape double track cross-section shield machine[J]. Tunnelling and Underground Space Technology, 2003, 18(2/3): 253-262.
[[15]]   KAWAI K, MINAMI T. Development of rectangular shield[J]. Komatsu Technical Report, 2001, 47(148): 46-54.
[[16]]   郑永光, 薛广记, 陈金波, 等. 我国异形掘进机技术发展、应用及展望[J]. 隧道建设(中英文), 2018, 38(6): 1067-1078.
ZHENG Y G, XUE G J, CHEN J B, et al. Development, application and prospect of technology of special-shaped boring machine in China[J]. Tunnel Construction, 2018, 38(6): 1067-1078.
[[17]]   庄欠伟. 滚筒式矩形顶管机试验样机研制和试验应用[J]. 上海建设科技, 2013(5): 7-9.
ZHUANG Q W. Development and experimental application of a drum-type rectangular pipe jacking machine prototype[J]. Shanghai Construction Science & Technology, 2013(5): 7-9.
[[18]]   邢振振. 矩形共同沟用掘进装置的研究[D]. 大庆: 东北石油大学, 2017.
XING Z Z. Research on rectangular tunneling machine used for utility tunnel excavation[D]. Daqing: Northeast Petroleum University, 2017.
[[19]]   王旭东, 郭京波. 矩形盾构刀盘系统结构设计[J]. 石家庄铁道大学学报(自然科学版), 2017, 30(4): 52-57.
WANG X D, GUO J B. Design on structure of rectangular shield cutter-head system[J]. Journal of Shijiazhuang Tiedao University (Natural Science Edition), 2017, 30(4): 52-57.
[[20]]   中煤科工集团上海有限公司. 我国首台全断面矩形快速掘进机顺利通过验收[EB/OL]. (2021-08-12) [2025-01-10]. .
China Coal Technology & Engineering Group Shanghai Co., Ltd. The first full-section rectangular rapid tunnel boring machine in China has been successfully accepted[EB/OL]. (2021-08-12) [2025-01-10]. .
[[21]]   何恩光, 任志强, 周鹏, 等. 煤矿巷道类矩形全断面掘进机切割机构设计及仿真分析[J]. 隧道建设(中英文), 2023, 43(5): 865-873.
HE E G, REN Z Q, ZHOU P, et al. Design and simulation analysis of cutting mechanism of quasi-rectangular full-face tunnel boring machines for coal mine roadway[J]. Tunnel Construction, 2023, 43(5): 865-873.
[[22]]   王峥荣, 熊晓燕, 张宏, 等. 基于LS-DYNA采煤机镐型截齿截割有限元分析[J]. 振动、测试与诊断, 2010, 30(2): 163-165, 210.
WANG Z R, XIONG X Y, ZHANG H, et al. Study on conical pick cutting using LS-DYNA[J]. Journal of Vibration, Measurement & Diagnosis, 2010, 30(2): 163-165, 210.
[[23]]   SU O, AKCIN N ALI. Numerical simulation of rock cutting using the discrete element method[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(3): 434-442.
[[24]]   ROJEK J, OÑATE E, LABRA C, et al. Discrete element simulation of rock cutting[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(6): 996-1010.
[[25]]   VAN WYK G, ELS D N J, AKDOGAN G, et al. Discrete element simulation of tribological interactions in rock cutting[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 65: 8-19.
[[26]]   谭青, 徐孜军, 夏毅敏, 等. 2种切削顺序下TBM刀具破岩机理的数值研究[J]. 中南大学学报(自然科学版), 2012, 43(3): 940-946.
TAN Q, XU Z J, XIA Y M, et al. Numerical study on mode of breaking rock by TBM cutter in two cutting orders[J]. Journal of Central South University (Science and Technology), 2012, 43(3): 940-946.
[[27]]   纪玉杰, 曹学涛. 掘进机截齿截割煤岩的离散元仿真方法[J]. 辽宁工程技术大学学报(自然科学版), 2013, 32(4): 488-492.
JI Y J, CAO X T. DEM simulation method study for picks cutting coal of roadheader[J]. Journal of Liaoning Technical University (Natural Science), 2013, 32(4): 488-492.
[[28]]   ZHOU Y N, LIN J S. Modeling the ductile‒brittle failure mode transition in rock cutting[J]. Engineering Fracture Mechanics, 2014, 127: 135-147.
[[29]]   DEWANGAN S, CHATTOPADHYAYA S, HLOCH S. Wear assessment of conical pick used in coal cutting operation[J]. Rock Mechanics and Rock Engineering, 2015, 48(5): 2129-2139.
[[30]]   谭青, 劳同炳, 张桂菊, 等. 静载与冲击加载方式下滚刀破岩特性[J]. 中南大学学报(自然科学版), 2018, 49(1): 101-108.
TAN Q, LAO T B, ZHANG G J, et al. Disc cutter cutting mechanism under static loading and impact dynamic loading conditions[J]. Journal of Central South University (Science and Technology), 2018, 49(1): 101-108.
[[31]]   闵锐, 侯天凡, 吴恩启. 类矩形盾构机刀盘推力分析与实验[J]. 上海建设科技, 2019(1): 5-8.
MIN R, HOU T F, WU E Q. Analysis and experiment of cutter head thrust of rectangular shield[J]. Shanghai Construction Science & Technology, 2019(1): 5-8.
[[32]]   吴恩启, 侯天凡, 闵锐, 等. 类矩形盾构机刀盘受力分析与检测研究[J]. 机械强度, 2021, 43(3): 538-545.
WU E Q, HOU T F, MIN R, et al. Research on force analysis and detection of quasi-rectangular shield machine’s cutter heads[J]. Journal of Mechanical Strength, 2021, 43(3): 538-545.
[[33]]   赵东旭. 基于勒洛三角形的方孔数控铣削加工新方法研究[D]. 哈尔滨: 哈尔滨理工大学, 2021.
ZHAO D X. Research on a new method of CNC milling of square holes based on Reuleaux triangle[D]. Harbin: Harbin University of Science and Technology, 2021.
[[34]]   赵丽娟, 赵名扬. 相似理论在采煤机螺旋滚筒结构设计中的应用[J]. 机械科学与技术, 2018, 37(1): 63-69.
ZHAO L J, ZHAO M Y. Similarity theory application in structure design of shearer drum[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(1): 63-69.
[[35]]   周方跃. 硬岩巷道掘进机水射流-刀盘破岩系统关键技术研究[D]. 徐州: 中国矿业大学, 2022.
ZHOU F Y. Research on key technology of rock breaking system of water jet-cutter head for hard rock tunneling boring machine[D]. Xuzhou: China University of Mining and Technology, 2022.
[[36]]   刘送永. 采煤机滚筒截割性能及截割系统动力学研究[D]. 徐州: 中国矿业大学, 2009. doi:10.1016/s1674-5264(09)60014-4
LIU S Y. Research on cutting performance of shearer drum and cutting system dynamics[D]. Xuzhou: China University of Mining and Technology, 2009.
doi: 10.1016/s1674-5264(09)60014-4
[[37]]   雷顺, 高富强, 王晓卿. 煤体单轴抗压强度统计与分级研究[J]. 煤炭科学技术, 2021, 49(3): 64-70.
LEI S, GAO F Q, WANG X Q. Study on statistics and classification of uniaxial compressive strength of coal[J]. Coal Science and Technology, 2021, 49(3): 64-70.
[[38]]   李建斌, 谭顺辉, 卓普周, 等. 异形断面隧道掘进机技术[M]. 北京: 人民交通出版社, 2020.
LI J B, TAN S H, ZHUO P Z, et al. Technology of irregular section tunnel boring machine[M]. Beijing: China Communications Press, 2020.
[[39]]   翟一欣, 郦亮, 李培楠. 异形盾构全断面刀盘切削土体的流动特性仿真研究[J]. 中国市政工程, 2021(2): 62-66, 126.
ZHAI Y X, LI L, LI P N. Simulation study on flow characteristics of full face cutterhead cutting soil of special-shaped shield[J]. China Municipal Engineering, 2021(2): 62-66, 126.
[[40]]   龙建兵, 杨志豪, 沈张勇. 类矩形盾构工法在宁波轨道交通工程中的应用探讨[J]. 地下工程与隧道, 2016(3): 1-6, 54.
LONG J B, YANG Z H, SHEN Z Y. Application of quasi-rectangular shield construction method in Ningbo rail transit line[J]. Underground Engineering and Tunnels, 2016(3): 1-6, 54.
[[41]]   郑霄峰, 李建斌, 荆留杰, 等. 小断面矩形掘进机仿形刀盘设计方法研究[J]. 铁道学报, 2021, 43(7): 169-176.
ZHENG X F, LI J B, JING L J, et al. Study on design method of profile cutterhead for small section rectangular TBMs[J]. Journal of the China Railway Society, 2021, 43(7): 169-176.
[[42]]   王东方, 张维熙, 董子博, 等. 类矩形盾构隧道衬砌结构受力的现场试验研究[J]. 现代隧道技术, 2016, 53(6): 174-181.
WANG D F, ZHANG W X, DONG Z B, et al. Experimental field study on the structural behaviors of the linings of quasi-rectangular shield tunnels[J]. Modern Tunnelling Technology, 2016, 53(6): 174-181.
[[43]]   王学滨, 侯文腾, 张博闻, 等. 单轴压缩煤样三种应变的变异系数的统计分析[J]. 地球物理学进展, 2018, 33(4): 1713-1720.
WANG X B, HOU W T, ZHANG B W, et al. Statistical analyses of variation coefficients of three kinds of strains of coal specimens in uniaxial compression[J]. Progress in Geophysics, 2018, 33(4): 1713-1720.
[[44]]   董立朋, 聂清浩, 孙晓坤, 等. 基于皮尔逊相关系数法的盾构掘进参数对地表沉降影响分析[J]. 施工技术(中英文), 2024, 53(1): 116-123.
DONG L P, NIE Q H, SUN X K, et al. Analysis of impact of shield tunneling parameters on ground settlement based on Pearson correlation coefficient method[J]. Construction Technology, 2024, 53(1): 116-123.
[[45]]   贺勇, 陈根林, 彭军. 全断面矩形快速掘进机小刀盘截割假煤壁试验[J]. 煤矿机电, 2019, 40(2): 19-24.
HE Y, CHEN G L, PENG J. Test on cutting of false coal wall with small cutter disc on whole section rectangular rapid roadheader[J]. Colliery Mechanical & Electrical Technology, 2019, 40(2): 19-24.
[1] WANG Fei, GONG Guo-fang, QIN Yong-feng. Controller design for the hybrid cutterhead driving system of TBMunder limited rotational speed condition[J]. Chinese Journal of Engineering Design, 2019, 26(6): 722-727.
[2] LING Jing-xiu, SUN Wei, YANG Xiao-jing, TONG Xin. Vibration response analysis of TBM cutterhead system under multi-point distributed loads[J]. Chinese Journal of Engineering Design, 2017, 24(3): 317-322.
[3] LIU Tong, GONG Guo-fang, ZHANG Zhen, PENG Zuo, WU Wei-qiang. Design and simulation analysis of hybrid cutterhead driving system for TBM test bed[J]. Chinese Journal of Engineering Design, 2015, 22(5): 438-444.