Please wait a minute...
Chinese Journal of Engineering Design  2025, Vol. 32 Issue (3): 421-426    DOI: 10.3785/j.issn.1006-754X.2025.04.185
Basic Parts Design     
Design and performance analysis of phase-change direct cooling plate for 2 kW laser pump source
Yuxiang JIANG1(),Chaochao ZHOU1,Yong CHEN1,Zhongxiang LIN2,Yunfeng DUAN3,Changjun QIU1()
1.Hunan Provincial Key Laboratory of Equipment Safety Service Technology under Abnormal Environment, University of South China, Hengyang 421001, China
2.China Coal Geology Group Co. , Ltd. , Beijing 100040, China
3.BWT Tianjin Ltd. , Tianjin 300201, China
Download: HTML     PDF(3654KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to achieve precise heat dissipation and component lightweighting for a 2 kW fiber laser, and to ensure its stable and reliable operation, effective thermal management for its pump source is necessary. A phase-change direct cooling plate was designed for a 2 kW fiber laser, using a method of compressor-driven and refrigerant phase-change direct cooling. The internal flow channel of the phase-change direct cooling plate was optimized, and the heat dissipation performance of the cooling plate was analyzed through CFD (computational fluid dynamics) numerical simulation and experimental test. it was determined that adopting the phase-change direct cooling plate with a single flow path and variable diameter of flow channel could maintain the working temperature of (26±0.5) ℃ at the pump source simulation heat source under the maximum heating power of 2.8 kW, while meeting the heat transfer condition. The result indicated that the colding plate could meet the heat dissipation requirements for the stable and reliable operation of a 2 kW fiber laser. The research results provide theoretical support for the production of principle prototype of phase-change direct cooling system.



Key wordsfiber laser      thermal management      phase-change direct cooling     
Received: 18 December 2024      Published: 02 July 2025
CLC:  TB 663  
Corresponding Authors: Changjun QIU     E-mail: j1922868468@163.com;qcj@usc.edu.cn
Cite this article:

Yuxiang JIANG,Chaochao ZHOU,Yong CHEN,Zhongxiang LIN,Yunfeng DUAN,Changjun QIU. Design and performance analysis of phase-change direct cooling plate for 2 kW laser pump source. Chinese Journal of Engineering Design, 2025, 32(3): 421-426.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2025.04.185     OR     https://www.zjujournals.com/gcsjxb/Y2025/V32/I3/421


2 kW激光器泵浦源相变直冷板设计与性能分析

为了实现2 kW光纤激光器的精准散热和部件轻量化,保证其稳定可靠工作,需对其泵浦源进行有效的热管理。针对2 kW光纤激光器设计了一种相变直冷板,其采用压缩机驱动、制冷剂相变直冷的方式;优化了相变直冷板的内部流道,并对冷板的散热性能进行CFD(computational fluid dynamics,计算流体动力学)数值模拟分析和实验测试。结果表明,在换热条件下,采用单流程加变径流道的相变直冷板,可以使泵浦源模拟热源在2.8 kW最高发热功率下工作温度保持为(26±0.5) ℃,表明该冷板能够满足2 kW光纤激光器稳定可靠工作的散热需求。研究结果为相变直冷系统原理样机的制作提供了理论支持。


关键词: 光纤激光器,  热管理,  相变直冷 
Fig.1 Schematic diagram of refrigerant flow channel
Fig.2 Physical picture of colding plate
Fig.3 Pressure difference between import and export of flow channel before and after optimization
Fig.4 Simulation model of colding plate
Fig.5 Temperature distribution nephograms of colding plate
Fig.6 Cooling system experimental platform
Fig.7 Setting of temperature measurement points on colding plate
Fig.8 Temperature changes of cooling plate temperature measurement points before and after flow channel optimization
Fig.9 Temperature rise time of colding plate temperature measurement points
Fig.10 Temperature rise curves of colding plate temperature measurement points
Fig.11 Principle prototype of phase-change direct cooling system
[[1]]   胡志涛, 何兵, 周军, 等. 高功率光纤激光器热效应的研究进展[J]. 激光与光电子学进展, 2016, 53(8): 14-24. doi:10.3788/lop53.080002
HU Z T, HE B, ZHOU J, et al. Research progress in thermal effect of high power fiber lasers[J]. Laser & Optoelectronics Progress, 2016, 53(8): 14-24.
doi: 10.3788/lop53.080002
[[2]]   LÜ Y, ZHENG H, LIU S. Thermal cooling analysis and validation of the ytterbium doped double clad fiber laser by a general analytic method[J]. Optical Fiber Technology, 2018, 45: 336-344.
[[3]]   李明, 宋国龙, 毕野, 等. 小型化全光纤激光器壳体结构设计与分析[J]. 激光技术, 2024, 48(4): 584-589.
LI M, SONG G L, BI Y, et al. Miniaturization design and analysis of shell structure of all-fiber laser[J]. Laser Technology, 2024, 48(4): 584-589.
[[4]]   马娜, 张岩岫, 邢晖, 等. 基于权重分析的高功率激光系统参数优化设计[J]. 光学 精密工程, 2024, 32(18): 2763-2771. doi:10.37188/ope.20243218.2763
MA N, ZHANG Y X, XING H, et al. Optimal design of core parameters of high-power laser systems based on weight analysis[J]. Optics and Precision Engineering, 2024, 32(18): 2763-2771.
doi: 10.37188/ope.20243218.2763
[[5]]   刘岩, 朱辰, 张利明, 等. 相变直冷高功率光纤激光器[J]. 激光与红外, 2019, 49(12): 1425-1430.
LIU Y, ZHU C, ZHANG L M, et al. Phase change direct cooling high power fiber laser[J]. Laser & Infrared, 2019, 49(12): 1425-1430.
[[6]]   姜一桐, 阮桢, 张磊, 等. 便携式高功率激光器蓄冷散热实验研究[J]. 今日消防, 2021, 6(9): 8-11.
JIANG Y T, RUAN Z, ZHANG L, et al. Experimental study on thermal management of portable high power laser based on cooling storage[J]. Fire Protection Today, 2021, 6(9): 8-11.
[[7]]   霍佳雨, 何俊, 张文尊, 等. 风冷光纤激光器的热分析和热管理[J]. 激光杂志, 2024, 45(12): 16-22.
HUO J Y, HE J, ZHANG W Z, et al. Thermal analysis and thermal management of air-cooled fiber lasers[J]. Laser Journal, 2024, 45(12): 16-22.
[[8]]   张利明, 张昆, 赵鸿, 等. 1.2 kW便携式光纤激光器[J]. 强激光与粒子束, 2022, 34(3): 26-30.
ZHANG L M, ZHANG K, ZHAO H, et al. 1.2 kW portable fiber laser[J]. High Power Laser and Particle Beams, 2022, 34(3): 26-30.
[[9]]   林傲祥, 彭昆, 俞娟, 等. 高功率连续光纤激光系统热效应及其抑制措施[J]. 强激光与粒子束, 2022, 34(1): 73-84. doi:10.11884/HPLPB202234.210336
LIN A X, PENG K, YU J, et al. Thermal effect and its suppression in high-power continuous-wave fiber laser system[J]. High Power Laser and Particle Beams, 2022, 34(1): 73-84.
doi: 10.11884/HPLPB202234.210336
[[10]]   黄祎文, 全晓军, 林涛. 基于双蒸发器压缩制冷系统的激光器散热方案设计及实验研究[J]. 低温工程, 2022(4): 26-33.
HUANG Y W, QUAN X J, LIN T. Design and experimental research of laser cooling scheme based on dual-evaporator compressional refrigeration system[J]. Cryogenics, 2022(4): 26-33.
[[11]]   王泽嵩, 刘金平, 周易, 等. 泵驱动的制冷剂相变冷板冷却系统实验研究[J]. 制冷学报, 2024, 45(1): 36-45.
WANG Z S, LIU J P, ZHOU Y, et al. Experimental study on pump-driven refrigerant two-phase cold-plate cooling system[J]. Journal of Refrigeration, 2024, 45(1): 36-45.
[[12]]   刘凯, 刘金平, 周易, 等. 高热流密度多热源冷却用相变换热冷板实验研究[J]. 西安工程大学学报, 2023, 37(5): 99-106.
LIU K, LIU J P, ZHOU Y, et al. Experimental study on phase change heat transfer cooling plate for multiple heat sources cooling with high heat flux[J]. Journal of Xi’an Polytechnic University, 2023, 37(5): 99-106.
[[13]]   LI X J, JIA L. The investigation on flow boiling heat transfer of R134a in micro-channels[J]. Journal of Thermal Science, 2015, 24(5): 452-462.
[[14]]   LI L, GOU Y N, MIN H, et al. Experimental study on the pool boiling heat transfer of R134a outside various enhanced tubes[J]. International Journal of Heat and Mass Transfer, 2024, 235: 126140.
[[15]]   YASSER Z K, OUDAH M H. Experimental comparison of flow boiling heat transfer in smooth and microfin tubes using R134a, R1234yf, and R513A[J]. International Journal of Refrigeration, 2024, 168: 506-520.
[[16]]   YE H Y, LUM L Y X, KANDASAMY R, et al. Flow boiling heat transfer enhancement of R134a in additively manufactured minichannels with microengineered surfaces[J]. Applied Thermal Engineering, 2024, 256: 124150.
[[17]]   WANG Q F, CAO J F, SU D D, et al. Numerical simulation of R134a flow boiling heat transfer in a horizontal mini-channel under various gravity levels[J]. International Journal of Heat and Mass Transfer, 2024, 235: 126141.
[[18]]   程勇, 郭延龙, 何志祝, 等. 相变散热技术在小型高效半导体抽运激光器中的应用研究[J]. 中国激光, 2016, 43(1): 102005. doi:10.3788/cjl201643.0102005
CHENG Y, GUO Y L, HE Z Z, et al. Application research of phase change material heat removal technology for compact high efficiency diode pumped laser[J]. Chinese Journal of Lasers, 2016, 43(1): 102005.
doi: 10.3788/cjl201643.0102005
[[19]]   杨锋平, 罗金恒, 赵新伟, 等. 输气管道高强度试压方法及其在X80管道上的实践[J]. 石油学报, 2013, 34(6): 1206-1211.
YNAG F P, LUO J H, ZHAO X W, et al. High-strength hydrostatic testing method for gas pipelines and its application in X80 pipelines[J]. Acta Petrolei Sinica, 2013, 34(6): 1206-1211.
[1] XU Yu-liang, CHEN Li-guo, BAI Yang, WANG Zhen, LIU Jie, ZHAO Jin-xuan. Study on double-loop cooling system of gasoline engine[J]. Chinese Journal of Engineering Design, 2020, 27(5): 671-680.