Please wait a minute...
Chinese Journal of Engineering Design  2025, Vol. 32 Issue (1): 112-120    DOI: 10.3785/j.issn.1006-754X.2025.04.123
Reliability and Quality Design     
Through-fault modeling and vibration characteristic analysis of rolling bearing based on piecewise displacement excitation function
Ya LUO1(),Keke GE2,Xiaowen YUAN2,Wenbing TU2()
1.State Key Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure, East China Jiaotong University, Nanchang 330013, China
2.School of Mechatronic and Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China
Download: HTML     PDF(2627KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In the traditional rolling bearing fault modeling, half-sine function is used to describe the displacement excitation, and the stiffness weakening effect at the fault edge is ignored, which leads to the deviation between the model and the reality. Taking NU306 bearing with local faults as the research object, a new piecewise displacement excitation function was proposed considering the elastic deformation of raceway before and after a fault. The coefficients of the function were determined by finite element analysis method and incorporated into the dynamic model of rolling bearing. The vibration characteristics of bearing under different fault widths using piecewise displacement excitation function and traditional half-sine displacement excitation function were compared and analyzed. The results showed that the piecewise displacement excitation function was more in line with the actual situation, and the obtained vibration signals were more consistent with the experimental results. Additionally, the bearing vibration response curve based on the piecewise displacement excitation function was smoother than that based on the traditional displacement excitation function. The research results provide a certain reference for in-depth study of vibration characteristics of rolling bearings with local faults.



Key wordsrolling bearing      displacement excitation      vibration characteristics     
Received: 15 March 2024      Published: 04 March 2025
CLC:  TH 133.3  
Corresponding Authors: Wenbing TU     E-mail: 252026716@qq.com;twb-2001@163.com
Cite this article:

Ya LUO,Keke GE,Xiaowen YUAN,Wenbing TU. Through-fault modeling and vibration characteristic analysis of rolling bearing based on piecewise displacement excitation function. Chinese Journal of Engineering Design, 2025, 32(1): 112-120.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2025.04.123     OR     https://www.zjujournals.com/gcsjxb/Y2025/V32/I1/112


基于分段位移激励函数的贯穿式故障建模及滚动轴承振动特性分析

在传统的滚动轴承故障建模中,大多采用半正弦函数来描述位移激励,忽略了故障边缘的刚度弱化效应,导致模型与实际存在偏差。以NU306局部故障轴承为研究对象,考虑故障前后滚道的弹性变形,提出了一种新的分段位移激励函数。采用有限元分析方法确定了函数的系数,并将系数代入滚动轴承动力学模型中,对比分析了不同故障宽度下采用分段位移激励函数与传统半正弦位移激励函数时轴承的振动特性。结果表明:分段位移激励函数更加符合实际情况,所得到的振动信号与实验结果更吻合;基于分段位移激励函数的轴承振动响应曲线比基于传统位移激励函数的平缓。研究结果为深入研究局部故障滚动轴承的振动特性提供了一定的参考。


关键词: 滚动轴承,  位移激励,  振动特性 
Fig.1 Schematic diagram of traditional additional displacement generated by rolling element through fault
Fig.2 Equivalent model for contact between roller and raceway of cylindrical roller bearing
Fig.3 Schematic diagram of actual additional displacement generated by rolling element through fault
几何参数数值
滚动体直径Dr/mm11
轴承节圆直径Dm/mm51.5
轴承内圈滚道直径Di/mm40.5
轴承外圈滚道直径Do/mm62.5
外圈厚度T/mm19
接触角β/(°)0
滚动体数量Z/个12
滚动体与滚道之间的径向间隙ε1/mm0.01
Table 1 Geometric parameters of NU306 cylindrical roller bearing
Fig.4 Finite element model of rolling bearing outer ring fault
材料密度/(kg/m3)弹性模量/GPa泊松比
GCr15钢7 8302060.3
黄铜8 5001050.324
Table 2 Material parameters of rolling bearing
Fig.5 Additional displacement curves of rolling element through fault
故障宽度/mm拟合度
反比例函数拟合(左)半正弦函数拟合反比例函数拟合(右)
0.50.991 00.997 40.994 7
10.986 60.963 90.973 3
20.997 40.991 70.984 8
Table 3 Fit degrees of additional displacement curves
系数数值
L=0.5 mmL=1 mmL=2 mm
A16.703×10-?61.745×10-?69.553×10-?8
A20.2050.0713.890×10-?2
A3-?2.172×10-?5-?2.450×10-?5-?2.501×10-?6
A43.684×10-?68.800×10-?61.023×10-?5
A51.117×10-?67.100×10-?61.178×10-?5
A63.231×10-?61.745×10-?61.020×10-?7
A7-0.1170.0070.089
A8-?3.276×10-?5-?2.450×10-?5-?2.630×10-?6
Table 4 Coefficients of piecewise displacement excitation function
系数仿真值计算值相对误差/%
A48.800×10-68.76×10-60.45
A57.100×10-67.14×10-60.56
Table 5 Comparison of simulated and calculated values of coefficients A4 and A5
Fig.6 Simplified model of cylindrical roller bearing
Fig.7 Vibration characteristics of rolling bearing under different displacement excitations
时域指标半正弦位移激励分段位移激励

L=

0.5 mm

L=

1 mm

L=

2 mm

L=

0.5 mm

L=

1 mm

L=

2 mm

RMS/g168.1181.4118.5167.5141.391.8
PTP/g775.5771.6771.6775.5826.83841.6
Ku2.11.92.52.12.36.0
Table 6 Time-domain metrics of vibration signals with different fault widths
Fig.8 Comparison between simulated value and theoretical value of cage speed
Fig.9 Rolling bearing vibration test bench
Fig.10 Spectrum diagram of bearing vibration signal obtained by test
Fig.11 Spectrum diagram of bearing vibration signal obtained by dynamic simulation
特征频率/Hz数值仿真值相对实验值的误差/%仿真值相对理论值的误差/%
理论值165.15-0.36-0.21
仿真值164.80
实验值165.40
Table 7 Comparison of theoretical, simulated and experimental values of fault characteristic frequency of bearing outer ring
[7]   牛蔺楷, 曹宏瑞, 何正嘉. 滚动轴承表面损伤建模与冲击力的定量计算[J]. 振动、测试与诊断, 2013, 33(): 5-8, 214.
NIU L K, CAO H R, HE Z J. Modeling of local surface defect in rolling bearing and quantitative calculation of impact force[J]. Journal of Vibration, Measurement & Diagnosis, 2013, 33(): 5-8, 214.
[8]   PATEL V N, TANDON N, PANDEY R K. A dynamic model for vibration studies of deep groove ball bearings considering single and multiple defects in races[J]. Journal of Tribology, 2010, 132(4): 041101.
[9]   刘静, 邵毅敏, 秦晓猛, 等. 基于非理想Hertz线接触特性的圆柱滚子轴承局部故障动力学建模[J]. 机械工程学报, 2014, 50(1): 91-97. doi:10.3901/jme.2014.01.091
LIU J, SHAO Y M, QIN X M, et al. Dynamic modeling on localized defect of cylindrical roller bearing based on non-hertz line contact characteristics[J]. Journal of Mechanical Engineering, 2014, 50(1): 91-97.
doi: 10.3901/jme.2014.01.091
[10]   田晶, 刘丽丽, 张凤玲, 等. 中介轴承多点故障动力学建模和仿真分析[J]. 推进技术, 2022, 43(2): 305-314.
TIAN J, LIU L L, ZHANG F L, et al. Dynamic modeling and simulation analysis of inter-shaft bearing with multi-point faults[J]. Journal of Propulsion Technology, 2022, 43(2): 305-314.
[11]   李昊泽, 贺雅, 冯坤, 等. 考虑时变激励的滚动轴承局部故障动力学建模[J]. 航空学报, 2022, 43(8): 625176.
LI H Z, HE Y, FENG K, et al. Dynamic modeling of rolling bearing local fault considering time-varying excitation[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 625176.
[12]   罗茂林, 郭瑜, 伍星. 考虑冲击力的球轴承外圈剥落缺陷双冲击现象动力学建模[J]. 振动与冲击, 2019, 38(14): 48-54.
LUO M L, GUO Y, WU X. Dynamic modeling of the dual-impulse behavior produced by a spall on the outer race of a ball bearing considering impact forces[J]. Journal of Vibration and Shock, 2019, 38(14): 48-54.
[13]   王凯, 剡昌锋, 王风涛, 等. 深沟球轴承复合故障动力学特征[J]. 哈尔滨工业大学学报, 2020, 52(1): 133-140.
[1]   ZHANG P J, DU Y, HABETLER T G, et al. A survey of condition monitoring and protection methods for medium-voltage induction motors[J]. IEEE Transactions on Industry Applications, 2011, 47(1): 34-46.
[2]   涂文兵, 袁晓文, 杨锦雯, 等. 不同元件故障状态下滚动轴承的动态特性研究[J]. 工程设计学报, 2023, 30(1): 82-92. doi:10.1088/1742-6596/2785/1/012053
doi: 10.1088/1742-6596/2785/1/012053
[13]   WANG K, YAN C F, WANG F T, et al. Dynamic characteristics of compound fault in deep groove ball bearing[J]. Journal of Harbin Institute of Technology, 2020, 52(1): 133-140.
[14]   张慧玲, 吕福玲. 滚动轴承点蚀故障动力学建模与仿真[J]. 机械强度, 2019, 41(4): 821-827.
ZHANG H L, LÜ F L. Dynamic modeling and simulation of rolling bearing with pitting failure[J]. Journal of Mechanical Strength, 2019, 41(4): 821-827.
[15]   刘静宇, 尚志武, 高茂生. 滚动轴承局部故障动力学建模与振动分析[J]. 组合机床与自动化加工技术, 2023(3): 74-77, 81.
LIU J Y, SHANG Z W, GAO M S. Dynamic modeling and vibration characterization of rolling bearing with local fault[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2023(3): 74-77, 81.
[16]   LIU J, SHAO Y M, LIM T C. Vibration analysis of ball bearings with a localized defect applying piecewise response function[J]. Mechanism and Machine Theory, 2012, 56: 156-169.
[17]   杨锦雯. 圆柱滚子轴承故障机理与振动特性分析[D]. 南昌: 华东交通大学, 2020.
YANG J W. Fault mechanism and vibration characteristics analysis of cylindrical roller bearing[D]. Nanchang: East China Jiaotong University, 2020.
[18]   涂文兵, 杨本梦, 杨锦雯, 等. 考虑滚动轴承故障处塑性变形的有限元建模与动力学特性分析[J]. 西安交通大学学报, 2022, 56(5): 85-94.
TU W B, YANG B M, YANG J W, et al. Finite element modeling and dynamic characteristics analysis with plastic deformation at rolling bearing failure considered[J]. Journal of Xi'an Jiaotong University, 2022, 56(5): 85-94.
[19]   刘静. 滚动轴承缺陷非线性激励机理与建模研究[D]. 重庆: 重庆大学, 2014. doi:10.3934/naco.2014.4.295
LIU J. Study on nonlinear excitation mechanism and modeling of rolling bearing defects[D]. Chongqing: Chongqing University, 2014.
doi: 10.3934/naco.2014.4.295
[2]   TU W B, YUAN X W, YANG J W, et al. Research on dynamic characteristics of rolling bearing under different component fault conditions[J]. Chinese Journal of Engineering Design, 2023, 30(1): 82-92.
doi: 10.1088/1742-6596/2785/1/012053
[3]   焦静. 基于同轴振动特征融合的滚动轴承故障诊断研究[D]. 北京: 北京交通大学, 2022.
JIAO J. Research on fault diagnosis of rolling bearing based on coaxial vibration feature fusion[D]. Beijing: Beijing Jiaotong University, 2022.
[4]   SINGH S, KÖPKE U G, HOWARD C Q, et al. Analyses of contact forces and vibration response for a defective rolling element bearing using an explicit dynamics finite element model[J]. Journal of Sound and Vibration, 2014, 333(21): 5356-5377.
[5]   曹宏瑞, 景新, 苏帅鸣, 等. 中介轴承故障动力学建模与振动特征分析[J]. 机械工程学报, 2020, 56(21): 89-99. doi:10.3901/jme.2020.21.089
CAO H R, JING X, SU S M, et al. Dynamic modeling and vibration analysis for inter-shaft bearing fault[J]. Journal of Mechanical Engineering, 2020, 56(21): 89-99.
doi: 10.3901/jme.2020.21.089
[6]   陈於学, 王冠兵, 杨曙年. 滚动轴承早期缺陷振动的简化模型[J]. 轴承, 2007(10): 18-21, 34.
CHEN Y X, WANG G B, YANG S N. Simplified vibration model of rolling bearings with premature defects[J]. Bearing, 2007(10): 18-21, 34.
[1] Junxing LI,Rui GAO,Ming QIU,Yanke LI,Jingtao LIU,Zhiwei LIU. Reliability life evaluation method of rolling bearing considering dynamic time-varying loads[J]. Chinese Journal of Engineering Design, 2024, 31(4): 420-427.
[2] Junxing LI,Shijie NING,Ming QIU. Reliability design of radial clearance of rolling bearing[J]. Chinese Journal of Engineering Design, 2023, 30(6): 738-745.
[3] Wen-bing TU,Xiao-wen YUAN,Jin-wen YANG,Ben-meng YANG. Research on dynamic characteristics of rolling bearing under different component fault conditions[J]. Chinese Journal of Engineering Design, 2023, 30(1): 82-92.
[4] ZENG Guang, BIAN Qiang, ZHAO Chun-jiang, YIN Yu-feng, FENG Yi-jie. Analysis of stability and vibration characteristics of angular contact ball bearing cage under variable parameters[J]. Chinese Journal of Engineering Design, 2020, 27(6): 735-743.
[5] BAI Yang-xi, CHEN Hong-yue, CHEN Hong-yan, WANG Xin. Analysis and test verification of transverse vibration of shearer rocker arm under multiple constraints[J]. Chinese Journal of Engineering Design, 2020, 27(6): 707-712.
[6] HUANG Zhi-qiang, LI Gang, TAO Zhi-fei, HAO Lei. Finite element modal analysis and experimental verification of vibroseis vibrator[J]. Chinese Journal of Engineering Design, 2017, 24(5): 530-535.
[7] WU Ning-Xiang, WU Ke-Qin, YOU Mei-Yan, XIE Li-Yang. Dynamic characteristics simulation of cracked beam[J]. Chinese Journal of Engineering Design, 2006, 13(4): 236-240.
[8] GUO Ming, CHEN Zong-Nong, WANG Qing-Jiu. Control of Preload of Bearing on Precision Machine Tool[J]. Chinese Journal of Engineering Design, 2001, 8(2): 85-87.
[9] CUI Dong-Yin, WANG Guang-Fu. Discussion on Rolling Bearing Fit Selection from Burning Loss of Rolling Bearings[J]. Chinese Journal of Engineering Design, 2000, 7(4): 5-7.