Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (6): 766-775    DOI: 10.3785/j.issn.1006-754X.2024.14.04
【Special Column】Achievement Exhibition of "2024’Science and Technology Festival for Construction Machinery Industry "-Innovative Technologies and Their Applications     
Research on flow characteristics of fluid pulse width modulation bidirectional variable mechanism
Xiuwen XU1(),Yan REN1(),Lizhong LU2,Jian RUAN2
1.College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, China
2.College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
Download: HTML     PDF(3729KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The method of variable-speed driving variable pump is mostly adopted for the bidirectional flow changes of hydraulic system. However, the structure of variable mechanism is relatively complicated, and frequent bidirectional variable regulation will lead to low dynamic response speed. Therefore, a new mechanism for flow regulation of fixed displacement pump was proposed to realize bidirectional variable function. The duty cycle of fluid pulse width modulation was changed by the axial movement of the spool of bidirectional variable mechanism. The product of the rotating speed of the spool relative to the valve sleeve and the number of valve port on the spool determined the frequency of fluid pulse width modulation. The flow characteristics of the bidirectional variable mechanism were analyzed by simulation and test. The results showed that the bidirectional variable mechanism could achieve bidirectional flow control with duty cycle of 0 to 100%, ane there was only 1.8% deviation between the simulation and test results. The research results provide a new flow control method for hydraulic pump with fixed speed design to use under variable speed working condition.



Key wordsbidirectional variable mechanism      bidirectional variable flow regulation      fluid pulse width modulation      flow characteristic     
Received: 16 April 2024      Published: 31 December 2024
CLC:  TH 137.5  
Corresponding Authors: Yan REN     E-mail: xgs180m@126.com;rentingting211@wzu.edu.cn
Cite this article:

Xiuwen XU,Yan REN,Lizhong LU,Jian RUAN. Research on flow characteristics of fluid pulse width modulation bidirectional variable mechanism. Chinese Journal of Engineering Design, 2024, 31(6): 766-775.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.14.04     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I6/766


流体脉宽调制双向变量机构流量特性研究

液压系统流量双向变化大多采用变转速驱动变量泵的方法,但变量机构的结构较复杂,且频繁双向变量调节会导致动态响应速度较慢。因此,提出了适用于定量泵流量调节的新机构,以实现双向变量功能。通过双向变量机构阀芯的轴向移动改变流体脉宽调制占空比,阀芯相对阀套的转速与阀芯上过流窗口数的乘积决定了流体脉宽调制的频率。对双向变量机构的流量特性进行了仿真和试验分析,结果表明:双向变量机构能够实现占空比为0~100%的双向流量控制,且仿真结果与试验结果之间仅有1.8%的误差。研究结果为固定转速设计的液压泵在变转速工况下的使用提供了一种新的流量控制方式。


关键词: 双向变量机构,  双向变量流量调节,  流体脉宽调制,  流量特性 
Fig.1 Schematic of principle of fluid pulse width modulation
Fig.2 Structureof bidirectional variable mechanism
Fig.3 Structure of spool and valve sleeve
Fig.4 Schematic of operation principle of bidirectional variable mechanism
Fig.5 Schematic of change of flow area at valve port
Fig.6 Schematic of change of flow direction
Fig.7 Schematic of flow area at valve port
Fig.8 Schematic of change of flow area at valve port with d∈[-b+c, -b+c+a]
Fig.9 Schematic of change of flow area at valve port with d∈[-b+c+a, c]
Fig.10 Schematic of change of flow area at valve port with d∈[-b+c+2a, b+c-a]
Fig.11 Flow area at valve port at load port side
Fig.12 AMESim simulation model of valve-controlled hydraulic motor system of bidirectional variable mechanism
参数数值
液压油密度/(kg·m-3)870
阀口流量系数0.67
阀口所在轴肩半径/mm15
油液弹性模量/Pa8×108
液压泵排量/(L/min)60
液压泵转速/(r/min)1 000
阀芯转速/(r/min)3 000
回油背压/MPa1
Table 1 Simulation parameters of bidirectional variable mechanism flow characteristic
Fig.13 Simulation curve of duty cycle-spool axial displacement
Fig.14 Simulation curves of output flow of bidirectional variable mechanism under different loads
Fig.15 Simulation curves of steady state output flow of bidirectional variable mechanism under different loads
Fig.16 Related equipment of test bench
Fig.17 Physical map of spool and valve sleeve
Fig.18 Schematic of test principle of bidirectional variable mechanism
Fig.19 Pressure waveform at load port side under different duty cycle
Fig.20 Flow characteristic curves of bidirectional variable mechanism without load
Fig.21 Flow characteristic curves of bidirectional variable mechanism without load of 600 N·m
[1]   扈凯, 张文毅, 祁兵, 等. 液压底盘在农业机械领域的应用与发展[J]. 江苏农业科学, 2019, 47(14): 259-263.
HU K, ZHANG W Y, QI B, et al. Application and development of hydraulic chassis in agricultural machineries domains[J]. Jiangsu Agricultural Sciences, 2019, 47(14): 259-263.
[2]   毛胜辉, 吕蒙, 李亚, 等. 船舵液压传动装置的振动特性分析和试验[J]. 舰船科学技术, 2023, 45(17): 66-69.
MAO S H, LÜ M, LI Y, et al. Vibration characteristics analysis and testing of ship rudder hydraulic transmission device[J]. Ship Science and Technology, 2023, 45(17): 66-69.
[3]   汪世益, 毛亚西. 闭式双向变量泵伺服系统的特性分析[J]. 液压与气动, 2013, 37(12): 26-30.
WANG S Y, MAO Y X. Characteristic analysis of servo system of closed type hydraulic variable pump[J]. Chinese Hydraulics & Pneumatics, 2013, 37(12): 26-30.
[4]   何智, 刘庆庭, 区颖刚. 甘蔗收获机双向变量柱塞泵动态响应特性仿真[J]. 农业机械学报, 2012, 43(): 329-334, 328.
HE Z, LIU Q T, OU Y G. Dynamic response characteristic simulation of double-action variable displacement plunger pump for sugarcane harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(): 329-334, 328.
[5]   何智,刘庆庭,区颖刚.伊顿1系列64双向变量柱塞泵动态响应特性仿真研究[C]//中国农业机械学会.2012中国农业机械学会国际学术年会论文集.2012:788-794..
HE Z, LIU Q T, QU Y G. Analysis on the dynamic response characteristic of a series 1 model 64 eaton double-action variable displacement plunger pump by virtual prototype technology[C]//Chinese Society for Agricultural Machinery. Proceedings of the 2012 International Academic Annual Conference of the Chinese Society for Agricultural Machinery. 2012: 788-794..
[6]   王伟. 双向变量泵、马达容积调速回路方案设计[J]. 科技创业月刊, 2006, 19(7): 192-193.
WANG W. Volumetric speed control closed circuit design of double-action variable displacement pump and motor[J]. Pioneering with Science & Technology Monthly, 2006, 19(7): 192-193.
[7]   赵家文. 基于液压传动的无级自动变速器模型分析[J]. 机床与液压, 2013, 41(20): 103-105.
ZHAO J W. Model analysis for stepless automatic transmission based on hydraulic technology[J]. Machine Tool & Hydraulics, 2013, 41(20): 103-105.
[8]   KOGLER H, SCHEIDL R, EHRENTRAUT M. A simulation model of a hydraulic buck converter based on a mixed time frequency domain iteration[C]//ASME/BATH 2013 Symposium on Fluid Power and Motion Control, Sarasota, Florida, USA, Oct. 6-9, 2013.
[9]   MANSOURI G, MISOVEC K, JOHNSON B, et al. Variable flow supply using switched-mode control of a fixed-displacement pump[C]//Proceedings of the Seventh Scandinavian International Conference on Fluid Power. Linköping, Sweden, 2001: 361-376.
[10]   孟庆堂, 施光林, 泮健. 一种数字配流与调速式低速大扭矩液压马达[J]. 机床与液压, 2008, 36(10): 1-3, 17.
MENG Q T, SHI G L, PAN J. A new type of low speed high torque hydraulic motor using digital distribution and speed adjusting[J]. Machine Tool & Hydraulics, 2008, 36(10): 1-3, 17.
[11]   孟庆堂. 低速大扭矩液压马达的数字式配流与调速机构研究[D]. 上海: 上海交通大学, 2009.
MENG Q T. Research on digital flow distribution and speed regulation mechanism of low speed and high torque hydraulic motor[D]. Shanghai: Shanghai Jiao- tong University, 2009.
[12]   COVE H R. Linear hydraulic stepping actuator with fast close capabilities: US7237472[P]. 2007-07-03.
[13]   GRADL C, KOVACIC I, SCHEIDL R. Development of an energy saving hydraulic stepper drive[C]//8th FPNI Ph D Symposium on Fluid Power, Lappeenranta, Finland, June 11, 2014.
[14]   TU H C, RANNOW M B, WANG M, et al. High-speed 4-way rotary on/off valve for virtually variable displacement pump/motor applications[EB/OL]. [2024-04-06]..
[15]   TU H C, RANNOW M B, WANG M, et al. Design, modeling, and validation of a high-speed rotary pulse-width-modulation on/off hydraulic valve[J]. Journal of Dynamic Systems, Measurement, and Control, 2012, 134(6): 061002.
[16]   WANG M R. CFD analysis, sensing and control of a rotary pulse width modulating valve to enable a virtually variable displacement pump[D]. Minnesota, Minneapolis:University of Minnesota, 2017.
[17]   BATDORFF M A, LUMKES J H. Virtually variable displacement hydraulic pump including compressability and switching losses[C]//ASME 2006 International Mechanical Engineering Congress and Exposition, Chicago, Illinois, USA, Nov. 5-6, 2006.
[18]   LUMKES J, BATDORFF M A, MAHRENHOLZ J R. Model development and experimental analysis of a virtually variable displacement pump system[J]. International Journal of Fluid Power, 2009, 10(3): 17-27.
[19]   ZHANG Q W, KONG X D, YU B, et al. Review and development trend of digital hydraulic technology[J]. Applied Sciences, 2020, 10(2): 579.
[20]   徐成都, 任燕, 黄煜, 等. 二维脉宽调制转阀压力损失特性分析[J]. 液压与气动, 2023, 47(10): 56-61.
XU C D, REN Y, HUANG Y, et al. Study on pressure loss of a two-dimensional rotary valve for fluid pulse width modulation[J]. Chinese Hydraulics & Pneumatics, 2023, 47(10): 56-61.
[1] Yan REN,Wangfang TAO,Jian WU,Yu HUANG,Lizhong LU. Energy consumption analysis of load sensitive system of fixed displacement pump based on fluid pulse width modulation[J]. Chinese Journal of Engineering Design, 2024, 31(6): 776-783.
[2] WU Jia-yi, YUE Yang, LI Jun-ye, JIN Zhi-jiang, QIAN Jin-yuan. Circumferential design of throttling window of main feed water regulating valve and its influence on flow characteristics[J]. Chinese Journal of Engineering Design, 2022, 29(1): 74-81.