Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (6): 776-783    DOI: 10.3785/j.issn.1006-754X.2024.14.03
【Special Column】Achievement Exhibition of "2024’Science and Technology Festival for Construction Machinery Industry "-Innovative Technologies and Their Applications     
Energy consumption analysis of load sensitive system of fixed displacement pump based on fluid pulse width modulation
Yan REN1(),Wangfang TAO1,Jian WU1,Yu HUANG2,Lizhong LU2
1.College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, China
2.College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
Download: HTML     PDF(4188KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to reduce the energy consumption of the load sensitive system of a fixed displacement pump, the valve group composed of load sensitive valves in the pump control system was replaced by a two-dimensional pulse width modulated rotary valve, and a load sensitive system based on fluid pulse width modulation was designed. According to the working principle of the load sensitive system, the AMESim simulation model of the system was established, the load sensitive characteristics and energy consumption of the system were simulated and analyzed, and an experimental platform was built for experimental verification. The results showed that the combination of two-dimensional pulse width modulated rotary valve and fixed displacement pump made the system load sensitive, so that the fixed displacement pump output power and load consumption power changed with the load, which reduced the overflow loss and improved the energy saving effect of the system.



Key wordsload sensing      two-dimensional pulse width modulation rotary valve      fluid pulse width modulation      energy consumption analysis     
Received: 15 April 2024      Published: 31 December 2024
CLC:  TH 137.51  
Cite this article:

Yan REN,Wangfang TAO,Jian WU,Yu HUANG,Lizhong LU. Energy consumption analysis of load sensitive system of fixed displacement pump based on fluid pulse width modulation. Chinese Journal of Engineering Design, 2024, 31(6): 776-783.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.14.03     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I6/776


基于流体脉宽调制的定量泵负载敏感系统能耗分析

为了减小定量泵负载敏感系统的能耗,用二维脉宽调制转阀替代泵控系统中由负载敏感阀构成的阀组,设计了一种基于流体脉宽调制的负载敏感系统。根据该负载敏感系统的工作原理,建立了系统AMESim仿真模型,对系统的负载敏感特性和能耗进行了仿真分析,并搭建了实验平台,进行实验验证。结果表明:二维脉宽调制转阀与定量泵的组合使系统具有负载敏感特性,使得定量泵输出功率和负载消耗的功率都随着负载的变化而变化,减小了溢流损失,提高了系统的节能效果。


关键词: 负载敏感,  二维脉宽调制转阀,  流体脉宽调制,  能耗分析 
Fig.1 Structure of two-dimensional pulse width modulation rotary valve
Fig.2 Plan view of valve core and valve sleeve with τ=50%
Fig.3 Flow distribution map with τ=50%
Fig.4 Plan view of valve core and valve sleeve with τ>50%
Fig.5 Flow distribution map with τ>50%
Fig.6 Structure of load sensitive system based on fluid pulse width modulation
Fig.7 Schematic of working principle of traditional proportioning pump load sensing system
Fig.8 Energy consumption diagram of traditional proportioning pump load sensitive system
Fig.9 Energy consumption diagram of load sensitive system based on fluid pulse width modulation
Fig.10 Simulation model of load sensitive system based on fluid pulse width modulation
参数数值
电机转速/(r/min)1 000
泵排量/(L/min)12
阀芯质量/kg5
活塞直径/mm30
活塞杆直径/mm24
弹簧预紧力/N407
弹簧刚度/(N/mm)5
Table 1 Parameters of simulation model of load sensitive system
Fig.11 Variation curve of external load force of hydraulic cylinder
Fig.12 Variation curves of pressure at both ends of throttle valve
Fig.13 Variation curves of power and energy of load sensitive system
Fig.14 Platform for energy saving experiment of load sensitive system
Fig.15 Pressure-flow experimental curves of load sensitive system
Fig.16 Comparison between experimental and simulated values of pump output energy and load consumption energy
[1]   CHENG M, ZHANG J H, XU B, et al. An electrohydraulic load sensing system based on flow/pressure switched control for mobile machinery[J]. ISA Transactions, 2020, 96: 367-375.
[2]   刘艳雄, 韩森波, 徐志成. 基于负载敏感与势能回收系统的液压精冲机节能研究[J]. 液压与气动, 2023, 47(8): 66-75. doi:10.11832/j.issn.1000-4858.2023.08.009
LIU Y X, HAN S B, XU Z C. Research on energy saving of hydraulic fine blanking press based on load sensing and potential energy recovery system[J]. Chinese Hydraulics & Pneumatics, 2023, 47(8): 66-75.
doi: 10.11832/j.issn.1000-4858.2023.08.009
[3]   CASOLI P, SCOLARI F, VESCOVINI C M, et al. Energy comparison between a load sensing system and electro-hydraulic solutions applied to a 9-ton excavator[J]. Energies, 2022, 15(7): 2583.
[4]   戚振涛, 王收军, 韩钰, 等. 基于负载敏感原理的特种车液压动力系统设计[J]. 机床与液压, 2023, 51(5): 134-137. doi:10.3969/j.issn.1001-3881.2023.05.021
QI Z T, WANG S J, HAN Y, et al. Design of hydraulic power system of special vehicle based on load sensing principle[J]. Machine Tool & Hydraulics, 2023, 51(5): 134-137.
doi: 10.3969/j.issn.1001-3881.2023.05.021
[5]   徐彬彬, 董志伟, 俞超. 电控负载敏感系统在液压长管路中的应用[J]. 机床与液压, 2023, 51(2): 141-145.
XU B B, DONG Z W, YU C. Application of the electronic load sensing system in hydraulic long pipeline[J]. Machine Tool & Hydraulics, 2023, 51(2): 141-145.
[6]   丁孺琦, 江来, 李刚, 等. 电液负载敏感负载口独立多模式切换控制能效研究[J]. 农业机械学报, 2021, 52(12): 433-442. doi:10.6041/j.issn.1000-1298.2021.12.046
DING R Q, JIANG L, LI G, et al. Energy efficiency of electro-hydraulic load sensing independent metering multi-mode switching control system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(12): 433-442.
doi: 10.6041/j.issn.1000-1298.2021.12.046
[7]   程敏, 于今, 丁孺琦, 等. 基于流量前馈与压力反馈复合控制的电液负载敏感系统[J]. 机械工程学报, 2018, 54(20): 262-270. doi:10.3901/jme.2018.20.262
CHENG M, YU J, DING R Q, et al. Electrohydraulic load sensing system via compound control of flow feedforward and pressure feedback[J]. Journal of Mechanical Engineering, 2018, 54(20): 262-270.
doi: 10.3901/jme.2018.20.262
[8]   汪浒江, 王振宇, 王涛, 等. 负载敏感泵流量控制精度及变量机构节流损耗特性[J]. 北京理工大学学报, 2023, 43(1): 70-80.
WANG H J, WANG Z Y, WANG T, et al. Flow control accuracy of load sensing pump and energy loss of displacement control mechanism[J]. Transactions of Beijing Institute of Technology, 2023, 43(1): 70-80.
[9]   MITOV A, SLAVOV T, KRALEV J, et al. Identification of electro-hydraulic load-sensing servo system[C]//20th International Scientific Conference Engineering for Rural Development, Jelgava, Republic of Latvia, May. 26-28, 2021. doi:10.22616/ERDev.2021.20.TF356 .
doi: 10.22616/ERDev.2021.20.TF356
[10]   罗艳蕾, 杜黎, 李屹. 液压旋耕机工作装置负载敏感系统分析[J]. 液压与气动, 2021, 45(9): 52-57. doi:10.11832/j.issn.1000-4858.2021.09.007
LUO Y L, DU L, LI Y. Analysis of load sensing system of working device of hydraulic rotary tiller[J]. Chinese Hydraulics & Pneumatics, 2021, 45(9): 52-57.
doi: 10.11832/j.issn.1000-4858.2021.09.007
[11]   LUO L, YANG K, ZHAO J H, et al. Load boundary analysis of the load-sensing hydraulic system with multi-way valve and pressure-compensated valve[J]. Journal of Physics: Conference Series, 2021, 2029(1): 012110.
[12]   刘华, 汪成文, 郭新平, 等. 电液负载敏感位置伺服系统自抗扰控制方法[J]. 北京航空航天大学学报, 2020, 46(11): 2131-2139. doi:10.13700/j.bh.1001-5965.2019.0569
LIU H, WANG C W, GUO X P, et al. Active disturbance rejection control method for position servo system based on electro-hydraulic load sensing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2131-2139.
doi: 10.13700/j.bh.1001-5965.2019.0569
[13]   张鹏, 郭志军. 节流独立控制负载敏感液压系统特性及其仿真分析[J]. 液压与气动, 2021, 45(4): 82-86.
ZHANG P, GUO Z J. Characteristics and simulation analysis of load sensitive hydraulic system with independent throttle control[J]. Chinese Hydraulics & Pneumatics, 2021, 45(4): 82-86.
[14]   杜黎, 罗艳蕾, 周山旭. 旋耕机电液负载敏感系统能耗分析[J]. 机床与液压, 2023, 51(6): 127-130. doi:10.3969/j.issn.1001-3881.2023.06.024
DU L, LUO Y L, ZHOU S X. Analysis of energy consumption of electro-hydraulic load sensing system of rotary tiller[J]. Machine Tool & Hydraulics, 2023, 51(6): 127-130.
doi: 10.3969/j.issn.1001-3881.2023.06.024
[15]   付胜杰, 林添良, 王浪, 等. 基于变转速控制的负载敏感系统研究[J]. 中国公路学报, 2020, 33(5): 189-196. doi:10.3969/j.issn.1001-7372.2020.05.017
FU S J, LIN T L, WANG L, et al. Load sensitive system based on variable speed control[J]. China Journal of Highway and Transport, 2020, 33(5): 189-196.
doi: 10.3969/j.issn.1001-7372.2020.05.017
[16]   BURY P, STOSIAK M, URBANOWICZ K, et al. A case study of open- and closed-loop control of hydrostatic transmission with proportional valve start-up process[J]. Energies, 2022, 15(5): 1860.
[17]   XU C D, REN Y, TANG H S, et al. Investigation on a novel high frequency two-dimensional (2D) rotary valve variable mechanism for fluid pulse-width-modulation application[J]. Journal of Mechanical Science and Technology, 2023, 37(2): 757-765.
[18]   XU C D, REN Y, TANG H S, et al. Analysis of flow characteristics and throttling loss of a novel high-frequency two-dimensional rotary valve[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2023, 237(9): 1645-1653.
[19]   王伟伟. 负载敏感系统动态特性与节能分析[D]. 秦皇岛: 燕山大学, 2011: 13-14.
WANG W W. Dynamic characteristics and energy saving analysis of load sensitive system[D]. Qinhuangdao: Yanshan University, 2011: 13-14.
[20]   任燕, 汤何胜, 向家伟, 等. 高频二维脉宽调制转阀流体控制特性研究[J]. 农业机械学报, 2022, 53(6): 451-458. doi:10.6041/j.issn.1000-1298.2022.06.048
REN Y, TANG H S, XIANG J W, et al. Fluid control characteristics of high frequency two-dimensional pulse width modulation rotary valve[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(6): 451-458.
doi: 10.6041/j.issn.1000-1298.2022.06.048
[1] Xiuwen XU,Yan REN,Lizhong LU,Jian RUAN. Research on flow characteristics of fluid pulse width modulation bidirectional variable mechanism[J]. Chinese Journal of Engineering Design, 2024, 31(6): 766-775.