Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (6): 741-749    DOI: 10.3785/j.issn.1006-754X.2024.03.410
【Special Column】Key Technologies of Design, manufacture, operation and maintenance for New Energy Equipment and Their Applications under the Carbon Peaking and Carbon Neutrality Goals     
Centrifugal pump fault diagnosis based on wavelet pack decomposition and random forest
Fei MA1(),Liguang SHAO1,Jun XU1,Mengqiu TAO1,Pei YUAN1(),Bingtao HU2
1.Hangzhou Boomy Intelligent Technology Co. , Ltd. , Hangzhou 310053, China
2.School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
Download: HTML     PDF(4869KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the difficulties of on-line fault diagnosis of centrifugal pumps in nuclear power plants, a fault diagnosis method based on wavelet pack decomposition and random forest is proposed. Firstly, the wavelet pack decomposition was used to decompose the vibration signal in the radial vertical direction of the centrifugal pump motor drive end into three layers, and the sub-band energy features were extracted. Then, the time-domain statistical features were extracted based on the waveform data of centrifugal pump vibration signal, and combined with wavelet packet energy features as inputs for the random forest model. Finally, the random forest model was trained with centrifugal pump vibration dataset collected from vibration test, and the centrifugal pump fault diagnosis model was formed. This model was compared with machine learning models such as support vector machine, logistic regression, K-nearest neighbor and Gaussian Naive Bayes on the same centrifugal pump vibration dataset. The results showed that the constructed model could accurately identify different operating states of the centrifugal pump, such as normal operation, impeller damage, impeller blockage and motor bearing fault, and exhibited better classification performance. The fault diagnosis method based on wavelet packet decomposition and random forest can effectively extract features from vibration signals and realize fault classification, which has certain feasibility and effectiveness for on-line fault intelligent diagnosis of centrifugal pumps in nuclear power plants.



Key wordscentrifugal pump      fault diagnosis      vibration signal      wavelet pack decomposition      random forest     
Received: 20 December 2023      Published: 31 December 2024
CLC:  TH 311  
Corresponding Authors: Pei YUAN     E-mail: maf@boomy.cn;yuanp@boomy.cn
Cite this article:

Fei MA,Liguang SHAO,Jun XU,Mengqiu TAO,Pei YUAN,Bingtao HU. Centrifugal pump fault diagnosis based on wavelet pack decomposition and random forest. Chinese Journal of Engineering Design, 2024, 31(6): 741-749.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.03.410     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I6/741


基于小波包分解与随机森林的离心泵故障诊断

针对核电厂离心泵在线故障诊断困难的问题,提出了一种基于小波包分解与随机森林的故障诊断方法。首先,利用小波包分解对离心泵电机驱动端径向垂直方向的振动信号进行3层分解并提取子频带能量特征。然后,基于离心泵振动信号的波形数据提取时域统计特征,并与小波包能量特征相结合作为随机森林模型的输入。最后,通过由振动试验得到的离心泵振动数据集对随机森林模型进行训练,形成离心泵故障诊断模型,并对该模型与支持向量机、逻辑斯蒂回归、K近邻、高斯朴素贝叶斯等机器学习模型在相同的离心泵振动数据集上进行了对比测试。结果表明,所构建的模型能够准确识别离心泵正常、叶轮破损、叶轮堵塞、电机轴承故障等运行状态,并表现出更优的分类性能。基于小波包分解与随机森林的故障诊断方法可以有效地从振动信号中提取特征并实现故障分类,对于核电厂离心泵在线故障智能诊断具有一定的可行性和有效性。


关键词: 离心泵,  故障诊断,  振动信号,  小波包分解,  随机森林 
Fig.1 Framework of centrifugal pump fault diagnosis system
特征量计算式
有效值xrms=1Mm=1Mxm2
均值xˉ=1Mm=1Mxm
标准差σx=1M-1m=1Mxm-xˉ2
峰值因子Cf=maxxmxrms
波形因子Sf=xrms1Mm=1Mxm
峭度Kr=m=1Mxm-xˉ4Mσx4
偏度Sk=m=1Mxm-xˉ3Mσx3
扰动因子Pf=σxxˉ
Table 1 Time-domain statistical features of vibration signal
Fig.2 Three-layer wavelet packet decomposition structure
Fig.3 Construction process of random forest model
参数数值
供电电压/V220~240
电机功率/W373
流量/(m3/h)5.796
叶轮直径/mm118.88
叶片数量/片3
Table 2 Specification parameters of centrifugal pump
Fig.4 Schematic of centrifugal pump vibration test bench
Fig.5 Physical map of centrifugal pump vibration test bench
Fig.6 Defective parts of test centrifugal pump
Fig.7 Original vibration signal of centrifugal pump
Fig.8 Wavelet packet decomposition coefficient of vibration signal of centrifugal pump under normal state
Fig.9 Time-domain waveform and spectrogram of original vibration signal and reconstructed signal of centrifugal pump under normal state
Fig.10 Normalized value of wavelet packet energy of centrifugal pump vibration signal
Fig.11 Fault diagnosis results of centrifugal pump based on random forest
Fig.12 Prediction results of different fault diagnosis models
模型准确率/%AUC-ROC召回率F1
SVM98.00.999 30.980 00.980 3
KNN99.51.000 00.995 00.995 0
随机森林100.01.000 01.000 01.000 0
逻辑斯蒂回归99.50.997 20.995 00.995 0
高斯朴素贝叶斯98.50.997 10.985 00.985 0
Table 3 Comparison of prediction effect of different fault diagnosis models
[1]   孔令杰, 雒晓辉, 宋立, 等. 核电厂离心泵叶轮裂纹故障分析与研究[J]. 水泵技术, 2019(4): 37-40.
KONG L J, LUO X H, SONG L, et al. Analysis and study of the impeller crack fault diagnosis for nuclear power plant centrifugal pump[J]. Pump Technology, 2019(4): 37-40.
[2]   黄若琳, 张志明, 李栋梁. 核电厂卧式多级离心泵智能诊断系统方案设计[J]. 新型工业化, 2022, 12(11): 104-107.
HUANG R L, ZHANG Z M, LI D L. Scheme design of intelligent diagnosis system for horizontal multistage centrifugal pump in nuclear power plant[J]. The Journal of New Industrialization, 2022, 12(11): 104-107.
[3]   宋怡. 基于贝叶斯分类的核电站泵类设备振动故障诊断方法[J]. 机械制造与自动化, 2023, 52(4): 64-67.
SONG Y. Vibration fault diagnosis method of pump equipment in nuclear power plant based on Bayesian classification[J]. Machine Building & Automation, 2023, 52(4): 64-67.
[4]   ABOSHOSHA A, HAMAD H A. Employing adaptive fuzzy computing for RCP intelligent control and fault diagnosis[J]. Nuclear Science and Techniques, 2023, 34: 138.
[5]   DUTTA N, KALIANNAN P, SHANMUGAM P. SVM algorithm for vibration fault diagnosis in centrifugal pump[J]. Intelligent Automation & Soft Computing, 2023, 35(3): 2997-3020.
[6]   辜文娟, 张扬. 基于IMIE、MCFS和SSA-ELM的离心泵故障诊断方法[J]. 机电工程, 2023, 40(9): 1456-1463.
GU W J, ZHANG Y. Fault diagnosis method of centrifugal pump based on IMIE and SSA-ELM[J]. Journal of Mechanical & Electrical Engineering, 2023, 40(9): 1456-1463.
[7]   KARAGIOVANIDIS M, PANTAZI X E, PAPAMICHAIL D, et al. Early detection of cavitation in centrifugal pumps using low-cost vibration and sound sensors[J]. Agriculture, 2023, 13(8): 1544.
[8]   ARASTE Z, SADIGHI A, JAMIMOGHADDAM M. Fault diagnosis of a centrifugal pump using electrical signature analysis and support vector machine[J]. Journal of Vibration Engineering & Technologies, 2023, 11(5): 2057-2067.
[9]   王治国, 吴茜. 基于共振特征的离心泵故障诊断[J]. 自动化应用, 2023(7): 144-146.
WANG Z G, WU Q. Fault diagnosis of centrifugal pump based on resonance characteristics[J]. Automation Application, 2023(7): 144-146.
[10]   CHEN Y F, YUAN J P, LUO Y, et al. Fault prediction of centrifugal pump based on improved KNN[J]. Shock and Vibration, 2021, 2021(1): 7306131.
[11]   TOBI M AL, BEVAN G, WALLACE P, et al. Faults diagnosis of a centrifugal pump using multilayer perceptron genetic algorithm back propagation and support vector machine with discrete wavelet transform-based feature extraction[J]. Computational Intelligence, 2021, 37(1): 21-46.
[12]   MANIKANDAN S, DURAIVELU K. Vibration-based fault diagnosis of broken impeller and mechanical seal failure in industrial mono-block centrifugal pumps using deep convolutional neural network[J]. Journal of Vibration Engineering & Technologies, 2023, 11(1): 141-152.
[13]   孙原理, 宋志浩. 基于多物理场信号相关分析与支持向量机的离心泵故障诊断方法[J]. 振动与冲击, 2022, 41(6): 206-212.
SUN Y L, SONG Z H. Centrifugal pump fault diagnosis based on the multi-physical field signals correlation analysis and support vector machine[J]. Journal of Vibration and Shock, 2022, 41(6): 206-212.
[14]   RAPUR J S, TIWARI R. Experimental time-domain vibration-based fault diagnosis of centrifugal pumps using support vector machine[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 2017, 3(4): 044501.
[15]   杨波, 黄倩, 付强, 等. 基于CEEMD和优化KNN的离心泵故障诊断方法[J]. 机电工程, 2022, 39(11): 1502-1509.
YANG B, HUANG Q, FU Q, et al. Fault diagnosis method for horizontal centrifugal pump based on CEEMD and optimized KNN[J]. Journal of Mechanical & Electrical Engineering, 2022, 39(11): 1502-1509.
[16]   AHMAD Z, HASAN M J, KIM J M. Centrifugal pump fault diagnosis using discriminative factor-based features selection and K-nearest neighbors[C]//International Conference on Intelligent Systems Design and Applications. Cham: Springer International Publishing, 2022: 145-153.
[17]   MURALIDHARAN V, SUGUMARAN V. Feature extraction using wavelets and classification through decision tree algorithm for fault diagnosis of mono-block centrifugal pump[J]. Measurement, 2013, 46(1): 353-359.
[18]   ADEODU A, DANIYAN I, OMITOLA O, et al. An adaptive Industrial Internet of things (IIOts) based technology for prediction and control of cavitation in centrifugal pumps[J]. Procedia CIRP, 2020, 91: 927-934.
[19]   张胜文, 杨凌翮, 程德俊. 数字孪生驱动的离心泵机组故障诊断方法研究[J]. 计算机集成制造系统, 2023, 29(5): 1462-1470.
ZHANG S W, YANG L H, CHENG D J. Fault diagnosis method of centrifugal pump driven by digital twin[J]. Computer Integrated Manufacturing Systems, 2023, 29(5): 1462-1470.
[20]   KUMAR A, TANG H S, VASHISHTHA G, et al. Noise subtraction and marginal enhanced square envelope spectrum (MESES) for the identification of bearing defects in centrifugal and axial pump[J]. Mechanical Systems and Signal Processing, 2022, 165: 108366.
[1] Miao XIE,Qingshuang MENG,Bo LI,Jinnan LU,Yuqi LI,Zhiyong YANG. Idler fault diagnosis method fusing short-time Fourier transform and convolutional neural network[J]. Chinese Journal of Engineering Design, 2024, 31(5): 565-574.
[2] Zihan YE,Zhonghua WANG,Chao JIANG,Xin Lü,Zhe ZHANG. Research on fault diagnosis method based on multi-discriminator auxiliary classifier generative adversarial network[J]. Chinese Journal of Engineering Design, 2024, 31(2): 137-150.
[3] Chao JI,Liang WANG,Xiao-jing WANG,Xiao-bing LI,Wen CAO. Design of cable tunnel fault warning system based on MSSA-SVM[J]. Chinese Journal of Engineering Design, 2023, 30(1): 109-116.
[4] WU Guo-pei, YU Yin-quan, TU Wen-bing. Review of research on fault diagnosis of permanent magnet synchronous motor[J]. Chinese Journal of Engineering Design, 2021, 28(5): 548-558.
[5] SHANG Zhi-wu, ZHOU Shi-qi. Research on micropipetting technology based on image monitoring[J]. Chinese Journal of Engineering Design, 2021, 28(4): 495-503.
[6] NI Hong-qi, JIN Chi, FENG Fei. Development of fault diagnosis system for corrugated compensator[J]. Chinese Journal of Engineering Design, 2019, 26(3): 354-363.
[7] MA Tian-bing, WANG Xiao-dong, DU Fei, WANG Xin-quan. Fault diagnosis for rigid guide based on GA-SVM[J]. Chinese Journal of Engineering Design, 2019, 26(2): 170-176.
[8] HU Yi-yao, ZHU Bin, ZHANG Wei, HE Wei, SHEN Ping-sheng. Design and implementation of knowledge base building tool software[J]. Chinese Journal of Engineering Design, 2018, 25(4): 367-373.
[9] ZHANG Qiang, LIU Zhi-heng, WANG Hai-jian, ZHANG He-zhe. Research on wear degree recognition of picks based on multi feature signal fusion[J]. Chinese Journal of Engineering Design, 2018, 25(3): 278-287.
[10] LI Xiao-huo, WENG Zheng-yang, QIANG Ya-sen, SHI Shang-wei, LI Yan. Fault diagnosis of hydraulic breaking hammer based on Fruit Fly Algorithm optimized fuzzy RBF neural network[J]. Chinese Journal of Engineering Design, 2015, 22(6): 540-545.
[11] LI Ling-Ling, JING Li-Ting, MA Dong-Juan, LI Zhi-Gang. Improved evidence theory and its application in fault diagnosis of power system[J]. Chinese Journal of Engineering Design, 2012, 19(6): 485-488.
[12] HAN Hai-tao,MA Hong-guang,HAN Kun,ZHENG Geng-le. Multitone stimulus signal design for identifying volterra frequency domain kernels[J]. Chinese Journal of Engineering Design, 2012, 19(2): 123-127.
[13] HAO Zhi-Yong, LIU Wei, XIA Wei, YAN Chuang. Fault diagnosis of the fan with air suction based on BP neural network[J]. Chinese Journal of Engineering Design, 2012, 19(1): 57-60.
[14] HAN Hai-Tao, MA Hong-Guang, LI Fei, ZHANG Jia-Liang-. Research on nonlinear system based on output frequency response functions[J]. Chinese Journal of Engineering Design, 2011, 18(5): 373-376.
[15] GUO Yu-Xiu, NI Xiao-Hong, WANG Yu-Tian. Study on the fault diagnosis of rolling mills based
on the chaos weak signal detection method
[J]. Chinese Journal of Engineering Design, 2011, 18(3): 218-221.