Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (1): 98-106    DOI: 10.3785/j.issn.1006-754X.2024.03.308
Industrial Software and Major Equipment Integrated Design     
Analysis of beam pointing of large aperture reflector antenna under ambient wind load
Tian LUAN1(),Song XUE1,2(),Peiyuan LIAN1,2,Jiaheng YU1,Yuxuan DU1,Meng WANG3,Wulin ZHAO4,Bo LU5,Qian XU6,Congsi WANG2
1.School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
2.Guangzhou Institute of Technology, Xidian University, Guangzhou 510555, China
3.Shaanxi Huanghe Group Co. , Ltd. , Xi'an 710043, China
4.The 39th Research Institute, China Electronics Technology Group Corporation, Xi'an 710065, China
5.Hubei Ezhou Tianyuan Grinding Wheel Co. , Ltd. , Ezhou 436001, China
6.Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011, China
Download: HTML     PDF(4606KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Large aperture reflector antenna is the key equipment for deep space exploration and satellite communication. In order to continuously improve the observation performance, the antenna aperture is increasing, and the antenna pointing accuracy requirements are higher and higher. With the increase of antenna aperture, the stiffness of antenna decreases while the windward area increases, which leads to serious flexible deformation of antenna and difficult to guarantee its performance. In order to investigate the influence of flexible deformation of large aperture reflector antenna on electrical performance under ambient wind load, a beam pointing analysis model for antenna is proposed. Firstly, the computational fluid dynamics method was used to numerically simulate the wind pressure distribution on the antenna surface, and the wind pressure coefficient of the antenna surface was obtained. Then, the deformation law of the antenna structure under different wind speed conditions was analyzed by using the independent characteristic of wind pressure coefficient and wind speed. Finally, according to the deformation characteristics of the antenna structure, the variation patterns of gain loss and pointing deviation of the antenna under different working states were analyzed. The results show that the proposed model can quickly evaluate the deformation and beam pointing characteristics of large aperture antennas under wind load, which provides theoretical guidance for the subsequent wind-resistant structure design and system control study of antennas.



Key wordsreflector antenna      wind load      wind pressure coefficient      flexible deformation      beam pointing characteristic     
Received: 20 October 2023      Published: 04 March 2024
CLC:  TH 751  
Corresponding Authors: Song XUE     E-mail: luan_tian0@163.com;sxue@xidian.edu.cn
Cite this article:

Tian LUAN,Song XUE,Peiyuan LIAN,Jiaheng YU,Yuxuan DU,Meng WANG,Wulin ZHAO,Bo LU,Qian XU,Congsi WANG. Analysis of beam pointing of large aperture reflector antenna under ambient wind load. Chinese Journal of Engineering Design, 2024, 31(1): 98-106.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.03.308     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I1/98


环境风载荷下大口径反射面天线波束指向分析

大口径反射面天线是深空探测、卫星通信的关键设备。为了不断提高观测性能,天线口径不断增大,进而对天线指向精度的要求越来越高。随着天线口径的增大,天线的刚度降低、迎风面积增大,这会导致天线的柔性变形严重,性能难以保证。为探究环境风载荷下大口径反射面天线的柔性变形对电性能的影响,提出了一种天线波束指向分析模型。首先,利用计算流体力学方法对天线表面的风压分布情况进行了数值模拟,得到了天线表面的风压系数。然后,利用风压系数与风速无关的特性,分析了不同风速工况下天线结构变形的规律。最后,根据天线结构变形的特点,分析了天线在不同工作状态下的增益损失、指向偏差等的变化规律。结果表明,所提出的模型可以快速评估大口径反射面天线在风载荷下的变形情况和波束指向特性,这为后续的天线抗风结构设计与系统控制研究提供了理论指导。


关键词: 反射面天线,  风载荷,  风压系数,  柔性变形,  波束指向特性 
Fig.1 CFD numerical simulation process
Fig.2 Computational domain model of large aperture reflector antenna
俯仰角反射面正面反射面背面
15°
30°
45°
60°
75°
90°
Table 1 Wind pressure coefficient on antenna reflector surface under different pitch angles
Fig.3 Variation trend of wind pressure coefficient on antenna reflector panel surface with pitch angles
Fig.4 Approximate calculation of average wind pressure coefficient for antenna reflector surface
Fig.5 Deformation of antenna reflector under different pitch angles
Fig.6 Extreme value of deformation of antenna reflector under different pitch angles
Fig.7 RMSE of antenna reflector deformation under different wind speeds and pitch angles
Fig.8 Analysis process for beam pointing of large aperture reflector antennas
Fig.9 Directional pattern of antenna at 6m/s wind speed
Fig.10 Gain loss of antenna at 6 m/s wind speed
Fig.11 Variation of the first sublobe level of antenna at 6 m/s wind speed
[1]   严粤飞,王从思,李帅,等.大型射电望远镜天线发展动态及机电耦合应用[J].中国科学:物理学 力学 天文学,2022,52(12):129501. doi:10.1360/sspma-2022-0121
YAN Y F, WANG C S, LI S, et al. Development of large-aperture radio telescopes and applications of coupled structural-electromagnetic theory[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2022, 52(12): 129501.
doi: 10.1360/sspma-2022-0121
[2]   王从思,肖岚,项斌斌,等.大型射电望远镜天线主动面补偿研究进展[J].中国科学:物理学 力学 天文学,2017,47(5):059503. doi:10.1360/sspma2017-00011
WANG C S, XIAO L, XIANG B B, et al. Development of active surface technology of large radio telescope antennas[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2017, 47(5): 059503.
doi: 10.1360/sspma2017-00011
[3]   张增太.风载荷在雷达天线结构设计中的考虑[J].雷达科学与技术,1997(4):58-61.
ZHANG Z T. Consideration of wind load in radar antenna structure design[J]. Radar Science and Technology, 1997(4): 58-61.
[4]   OLMI L, MAUSKOPF P D. A comparison of radome- and astrodome-enclosed large radio telescopes at millimeter wavelengths: the large millimeter telescope[J]. Radio Science, 1999, 34(3): 733-746.
[5]   KIM J K, PARK S, JIN T. Simplified fuzzy-PID controller of data link antenna system for moving vehicles[C]//PRICAI'06: Proceedings of the 9th Pacific Rim International Conference on Artificial Intelligence. Heidelberg: Springer-Verlag, 2006: 1083-1088.
[6]   GAWRONSKI W. Antenna control systems: from PI to H∞[J]. IEEE Antennas and Propagation Magazine, 2001, 43(1): 52-60.
[7]   LIN J M, CHANG P K. Intelligent PD-type fuzzy controller design for mobile satellite antenna tracking system with parameter variations effect[C]// Computational Intelligence in Control and Automation (CICA), Paris, Apr. 11-15, 2011.
[8]   TANG T, NIU S X, MA J G, et al. A review on control methodologies of disturbance rejections in optical telescope[J]. Opto-Electronic Advances, 2019, 2(10): 190011.
[9]   TAMURA T, NOZAWA K, KONDO K. AIJ guide for numerical prediction of wind loads on buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(10/11): 1974-1984.
[10]   YOUNG D, DAVID S. Numerical simulations of airflow in telescope enclosures[J]. The Astronomical Journal, 1996, 112: 2896.
[11]   DU Q, DU P A. Computation of fluctuating wind pressure and wind loads on phased-array antennas[J]. IEEE Antennas and Propagation Magazine, 2012, 54(1): 66-75.
[12]   杜强.雷达天线风载特性的数值计算方法及应用研究[D].成都:电子科技大学,2011:21-34.
DU Q. Research and application on numerical method for characteristic computation of wind loads on radar antennas[D]. Chengdu: University of Electronic Science and Technology of China, 2011: 21-34.
[13]   王春圆.巨型射电望远镜风荷载特性的数值模拟研究[D].哈尔滨:哈尔滨工业大学,2012:76-85.
WANG C Y. Numerical simulation study on characteristics of wind loads of huge radio telescope[D]. Harbin: Harbin Institute of Technology, 2012: 76-85.
[14]   刘岩,钱宏亮,范峰.大型射电望远镜结构风荷载特性研究[J].红外与激光工程,2015,44(1):148-156. doi:10.3969/j.issn.1007-2276.2015.01.026
LIU Y, QIAN H L, FAN F. Wind load characteristics of large radio telescope[J]. Infrared and Laser Engineering, 2015, 44(1): 148-156.
doi: 10.3969/j.issn.1007-2276.2015.01.026
[15]   LADD J, SLOTNICK J, NORBY W, et al. Computational fluid dynamics modeling and analysis for the Giant Magellan Telescope (GMT)[C]//SPIE Astronomical Telescopes + Instrumentation, Edinburgh, Jun. 26-Jul. 1, 2016.
[16]   纪兵兵,陈金瓶.ANSYS ICEM CFD网格划分技术实例详解[M].北京:中国水利水电出版社,2012:67-99.
JI B B, CHEN J P. Detailed explanation of ANSYS ICEM CFD mesh division technology example[M]. Beijing: China Water & Power Press, 2012: 67-99.
[17]   林斌.CFD模拟技术在大型复杂结构工程中的应用[D].哈尔滨:哈尔滨工业大学,2005:42-70.
LIN B. Application of CFD simulation technology in large and complex structural engineering[D]. Harbin: Harbin Institute of Technology, 2005: 42-70.
[18]   王娜.新疆奇台110米射电望远镜[J].中国科学:物理学 力学 天文学,2014,44(8):783-794. doi:10.1360/sspma2014-00039
WANG N. Xinjiang Qitai 110 m radio telescope[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2014, 44(8): 783-794.
doi: 10.1360/sspma2014-00039
[19]   RAHMAT-SAMII Y. A comparison between GO/aperture-field and physical-optics methods of offset reflectors[J]. IEEE Transactions on Antennas and Propagation, 1984, 32(3): 301-306.
[20]   张洁.大型反射面天线抗风扰控制补偿关键技术研究[D].西安:西安电子科技大学,2016:60-100.
ZHANG J. Research on key technologies of control compensation for large antenna under wind disturbance[D]. Xi’an: Xidian University, 2016: 60-100.
[1] Zheng LIU,Bing-zhen WANG,Gai-yun HE,Yuan-fei ZHANG,Xu-yu CHENG. Structure design and analysis of integrated photovoltaic power supply device in polar regions[J]. Chinese Journal of Engineering Design, 2022, 29(4): 493-499.
[2] ZHOU Chao, QIN Rui-jiang, RUI Xiao-ming. Analysis of mechanical properties of V-shaped insulator string under wind load[J]. Chinese Journal of Engineering Design, 2021, 28(1): 95-104.
[3] WANG Yu-pu, CHENG Wen-ming, DU Run, WANG Shu-biao, YANG Xing-zhou, ZHAI Shou-cai. Simulation analysis of wind load response for large gantry crane[J]. Chinese Journal of Engineering Design, 2020, 27(2): 239-246.
[4] QIAO Yin-hu, HAN Jiang, ZHANG Chun-yan. Study on suppression of vibration of the piezoelectric plate shell wind turbine blade under voltage[J]. Chinese Journal of Engineering Design, 2017, 24(5): 518-522,529.
[5] ZHOU Ping-Huai, ZHAO Yang, HUANG Ye-Fei. Performance under force of column-supported steel silos under wind loading[J]. Chinese Journal of Engineering Design, 2005, 12(4): 243-246.