Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (4): 428-437    DOI: 10.3785/j.issn.1006-754X.2024.03.210
Reliability and Quality Design     
Transverse vibration analysis and active disturbance rejection decoupling control of rain erosion blades considering mass distribution
Chunlong FANG1(),Mengjun WANG2,He ZHOU1,Songmei LI1()
1.College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
2.Shandong Wantong Hydraulic Co. , Ltd. , Rizhao 262399, China
Download: HTML     PDF(3346KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to improve the stability and safety of the high-speed rain erosion resistance test device, the transverse vibration characteristics of rain erosion blades were analyzed with the rotor-rain erosion blade system as the research object. Firstly, a four-degree-of-freedom transverse vibration model of rotor-rain erosion blade system was established considering the effects of rain erosion blade vibration, mass eccentricity of rotary-blade connecting disc and unbalanced magnetic pull force of rotor. Then, the motion differential equation of rotor-rain erosion blade system was established based on Lagrange equation, and the Runge-Kutta algorithm was used to solve the equation numerically, in order to observe the distribution law of axis trajectory and vibration amplitude of rotor and rain erosion blade. Considering the nonlinear strong coupling relationship between rotor and rain erosion blade, an active disturbance rejection decoupling control method was adopted to suppress the transverse vibration of rain erosion blade, and the parameters of the extended state observer were adjusted by pole assignment and bandwidth. Finally, an experimental platform was set up to analyze the vibration characteristics of the rain erosion blade before and after adopting active disturbance rejection decoupling control, and the results were compared with the numerical analysis results. The results showed that the vibration of rotor-rain erosion blade system exceeded the standard before the active disturbance rejection decoupling control was adopted, but the transverse vibration of rain erosion blade could be effectively suppressed after the active disturbance rejection decoupling control was adopted, which verified the feasibility and effectiveness of the control method. The research results can provide theoretical reference for the structural optimization of high-speed rain erosion resistance test device.



Key wordsrotor-rain erosion blade system      transverse vibration      numerical analysis      active disturbance rejection      decoupling control     
Received: 23 October 2023      Published: 26 August 2024
CLC:  TH 113  
Corresponding Authors: Songmei LI     E-mail: fang_chun_long@163.com;lisongmei1025@163.com
Cite this article:

Chunlong FANG,Mengjun WANG,He ZHOU,Songmei LI. Transverse vibration analysis and active disturbance rejection decoupling control of rain erosion blades considering mass distribution. Chinese Journal of Engineering Design, 2024, 31(4): 428-437.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.03.210     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I4/428


考虑质量分布的雨蚀叶片横向振动分析与自抗扰解耦控制

为提升高速耐雨蚀测试装置运行的稳定性与安全性,以其转子-雨蚀叶片系统为研究对象,开展雨蚀叶片的横向振动特性分析。首先,综合考虑雨蚀叶片振动、旋叶连接盘质量偏心及转子不平衡磁拉力的影响,建立转子-雨蚀叶片系统的四自由度横向振动模型。然后,基于Lagrange方程建立转子-雨蚀叶片系统的运动微分方程,并利用Runge-Kutta算法对方程进行数值求解,以观察转子及雨蚀叶片的轴心轨迹与振幅的分布规律。考虑到转子与雨蚀叶片的非线性强耦合关系,采用自抗扰解耦控制方法来抑制雨蚀叶片的横向振动,其中扩张状态观测器的参数采用极点配置和带宽进行调节。最后,通过搭建实验平台来分析采用自抗扰解耦控制前后雨蚀叶片的振动特性,并与数值分析结果进行对比。结果表明,在采用自抗扰解耦控制前转子-雨蚀叶片系统存在振动超标现象,而采用自抗扰解耦控制后雨蚀叶片的横向振动得到了有效抑制,验证了该控制方法的可行性和有效性。研究结果可为后续高速耐雨蚀测试装置的结构优化提供理论参考。


关键词: 转子-雨蚀叶片系统,  横向振动,  数值分析,  自抗扰,  解耦控制 
Fig.1 Vibration model of rotor-rain erosion blade system
Fig.2 Schematic of two-dimensional structure of rotor-rain erosion blade system
参数单位数值
转子质量m1kg20
旋叶连接盘质量m2kg20
雨蚀叶片质量ma1kg10
雨蚀叶片质心到旋叶连接盘形心的距离l1m0.6
转子偏心距e1m1×10-4
旋叶连接盘偏心距e2m1×10-3
转子阻尼系数c1N·s/m2×102
旋叶连接盘阻尼系数c2N·s/m2×102
深沟球轴承Ⅰ刚度k1N/m1×108
深沟球轴承Ⅱ刚度k2N/m1×108
Table 1 Parameters of rotor-rain erosion blade system
Fig.3 Axis trajectory, vibration displacement time-domain map and Poincaré section of rotor and rain erosion blade with ω=150 rad/s
Fig.4 Axis trajectory, vibration displacement time-domain map and Poincaré section of rotor and rain erosion blade with ω=350 rad/s
Fig.5 Active disturbance rejection control structure for rotor-rain erosion blade system
Fig.6 Active disturbance rejection decoupling control process of rotor-rain erosion blade system
Fig.7 Vibration displacement of rotor-rain erosion blade system under active disturbance rejection decoupling control
Fig.8 Control variables and disturbance estimation of rotor-rain erosion blade system under active disturbance rejection decoupling control
Fig.9 Structure of high-speed rain erosion resistance test device
Fig.10 Time-domain map of vibration displacement of rain erosion blade before using active disturbance rejection decoupling control
Fig.11 Time-domain map of vibration displacement of rain erosion blade after using active disturbance rejection decoupling control
[1]   杨铮鑫,卞天天,党鹏飞.叶片质量失谐下整体叶盘的振动响应特性研究[J].机电工程,2022,39(8):1138-1144.
YANG Z X, BIAN T T, DANG P F. Vibration response characteristics of integral blade disc under blade mass detuning[J]. Journal of Mechanical & Electrical Engineering, 2022, 39(8): 1138-1144.
[2]   吴锦涛,王珺,徐自力,等.高转速部分进气涡轮盘气流力及叶片振动响应研究[J].西安交通大学学报,2022,56(7):108-117.
WU J T, WANG J, XU Z L, et al. Airflow force and vibration response for high speed partial-admission turbine disk[J]. Journal of Xi'an Jiaotong University, 2022, 56(7): 108-117.
[3]   BHAMU R K, SHUKLA A, SHARMA S C, et al. Vibration response of steam turbine healthy and cracked blade under the stress stiffening and spin softening effects[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2022, 236(2): 224-243.
[4]   吴志渊,赵林川,颜格,等.转轴-轮盘-裂纹叶片耦合系统的叶尖振动特性[J].航空学报,2024,45(4):628346. doi:10.1007/s10483-024-3071-5
WU Z Y, ZHAO L C, YAN G, et al. Vibration characteristics of blade tip in a shaft-disk-cracked-blade coupling system[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 628346.
doi: 10.1007/s10483-024-3071-5
[5]   李书进,郑达成,孔凡.海上浮式风机多体系统耦合动力模型研究[J].振动工程学报,2024,37(1):20-30.
LI S J, ZHENG D C, KONG F. Coupled dynamic model of multi-body system of floating offshore wind turbine[J]. Journal of Vibration Engineering, 2024, 37(1): 20-30.
[6]   代元军,贺凯,李保华,等.双叉式叶尖结构对风力机风轮振动的影响[J].排灌机械工程学报,2022,40(3):276-281.
DAI Y J, HE K, LI B H, et al. Influence of double-fork blade tip structure on wind turbine vibration[J]. Journal of Drainage and Irrigation Machinery Engineering, 2022, 40(3): 276-281.
[7]   周子宣,黄修长,华宏星.科氏效应对叶片-桨毂-轴耦合系统振动特性的影响规律研究[J].应用力学学报,2022,39(3):527-535.
ZHOU Z X, HUANG X C, HUA H X. Coriolis effect on vibration characteristics of blade-hub-shaft coupling system[J]. Chinese Journal of Applied Mechanics, 2022, 39(3): 527-535.
[8]   潘宏刚,梁鑫,张野,等.裂纹对叶盘系统振动特性影响的研究[J].热能动力工程,2022,37(3):67-71.
PAN H G, LIANG X, ZHANG Y, et al. Study on the effect of crack on the vibration characteristics of bladed disk system[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(3): 67-71.
[9]   沈国际,官凤娇,边子方,等.裂纹叶片非线性振动响应理论分析与实验验证[J].国防科技大学学报,2021,43(6):127-134.
SHEN G J, GUAN F J, BIAN Z F, et al. Theoretical analysis and experimental verification of nonlinear vibrational response of cracked blade[J]. Journal of National University of Defense Technology, 2021, 43(6): 127-134.
[10]   裘孙洋,潘金豪.包角对高比转速双叶片自吸离心泵外特性及振动特性的影响[J].流体机械,2021,49(8):40-47.
QIU S Y, PAN J H. The influence of wrap angle on hydrodynamic performance and vibration characteristics of high-specific-speed double blades self-priming centrifugal pump[J]. Fluid Machinery, 2021, 49(8): 40-47.
[11]   徐涛,王强,唐洪飞.气冷涡轮叶片振动特性分析[J].机械设计与制造工程,2022,51(3):63-66.
XU T, WANG Q, TANG H F. Vibration characteristics analysis of air-cooled turbine blades[J]. Machine Design and Manufacturing Engineering, 2022, 51(3): 63-66.
[12]   姜华,常越勇,宫武旗,等.预应力模态下对旋风机叶片流致振动特性[J].流体机械,2022,50(8):89-96.
JIANG H, CHANG Y Y, GONG W Q, et al. Fluid-induced vibration characteristics of a contra-rotating fan blade under prestressed mode[J]. Fluid Machinery, 2022, 50(8): 89-96.
[13]   ABBAS A F, HAMZAH A A. Studying the thermal influence on the vibration of rotating blades[J]. Measurement Science Review, 2022, 22(2): 65-72.
[14]   周震霆,贺星,刘永葆.气动阻尼对裂纹叶片振动特性的影响研究[J].燃气轮机技术,2022,35(3):42-48.
ZHOU Z T, HE X, LIU Y B. Influence of aerodynamic damping on vibration characteristics of cracked blade[J]. Gas Turbine Technology, 2022, 35(3): 42-48.
[15]   白叶飞,赵元星,汪建文,等.旋转激振气流下风力机风轮振动及应力谐响分析[J].科学技术与工程,2022,22(9):3557-3563.
BAI Y F, ZHAO Y X, WANG J W, et al. Analysis of vibration and stress harmonic response on wind turbine rotor under rotating excited airflow[J]. Science Technology and Engineering, 2022, 22(9): 3557-3563.
[16]   白杨溪,陈洪月,陈洪岩,等.多约束条件下采煤机摇臂横向振动分析及试验验证[J].工程设计学报,2020,27(6):707-712.
BAI Y X, CHEN H Y, CHEN H Y, et al. Analysis and test verification of transverse vibration of shearer rocker arm under multiple constraints[J]. Chinese Journal of Engineering Design, 2020, 27(6): 707-712.
[17]   刘一雄,杜青,陈育志,等.风扇整体叶盘振动响应数值仿真及试验验证[J].航空发动机,2021,47(6):39-44.
LIU Y X, DU Q, CHEN Y Z, et al. Numerical simulation and experimental verification of vibration response analysis of a fan blisk[J]. Aeroengine, 2021, 47(6): 39-44.
[18]   魏建宝,李松梅,徐雨田.三叉式-球笼式双联万向联轴器的扭转振动特性分析[J].工程设计学报,2021,28(4):458-465.
WEI J B, LI S M, XU Y T. Analysis of torsional vibration characteristics of tripod-ball cage double universal coupling[J]. Chinese Journal of Engineering Design, 2021, 28(4): 458-465.
[19]   常新宇,任朝晖.转子-叶片系统振动抑制技术应用[J].机械设计,2021,38(11):24-28.
CHANG X Y, REN Z H. Application of rotor-blade system vibration suppression technology[J]. Journal of Machine Design, 2021, 38(11): 24-28.
[20]   HASHEMI A, JANG J, HOSSEINI-HASHEMI S. Smart active vibration control system of a rotary structure using piezoelectric materials[J]. Sensors, 2022, 22(15): 5691.
[21]   PUSTINA L, SERAFINI J, PASQUALI C, et al. A novel resonant controller for sea-induced rotor blade vibratory loads reduction on floating offshore wind turbines[J]. Renewable and Sustainable Energy Reviews, 2023, 173: 113073.
[22]   韩京清.从PID技术到“自抗扰控制”技术[J].控制工程,2002,9(3):13-18. doi:10.3969/j.issn.1671-7848.2002.03.003
HAN J Q. From PID technique to active disturbances rejection control technique[J]. Control Engineering of China, 2002, 9(3): 13-18.
doi: 10.3969/j.issn.1671-7848.2002.03.003
[1] Pei-can ZHUANG,Qi-yang LI,Xin-fu CHI,Yi-ze SUN. Research on modeling and control strategy of mechatronics system for radial ring braiding machine[J]. Chinese Journal of Engineering Design, 2022, 29(3): 347-357.
[2] JIA Hui-bo, LI Cheng-yu, WU Xiao-jun, LIU Xiao-qing, LI Yan-lei. Guidance mechanism design of omnidirectional AGV and its motion control research[J]. Chinese Journal of Engineering Design, 2018, 25(5): 546-552.
[3] HAN Ding, DING Jun. Investigation on PMSM speed regulation system based on TLESO/HLESO/RLESO[J]. Chinese Journal of Engineering Design, 2018, 25(1): 94-102.
[4] ZHOU Jia-Wei, LIU Yu, LIU Song-Yong, DU Chang-Long. Characteristic analysis of dynamic meshing for shearer walking mechanism[J]. Chinese Journal of Engineering Design, 2013, 20(3): 230-235.
[5] BAO Min, FU Xin, CHEN Ying. CFD-based method to achieve velocity profile in ultrasonic flowmeter[J]. Chinese Journal of Engineering Design, 2002, 9(2): 101-102.